Matches in SemOpenAlex for { <https://semopenalex.org/work/W2971036193> ?p ?o ?g. }
- W2971036193 abstract "Zero-shot and few-shot learning aim to improve generalization to unseen concepts, which are promising in many realistic scenarios. Due to the lack of data in unseen domain, relation modeling between seen and unseen domains is vital for knowledge transfer in these tasks. Most existing methods capture seen-unseen relation implicitly via semantic embedding or feature generation, resulting in inadequate use of relation and some issues remain (e.g. domain shift). To tackle these challenges, we propose a Transferable Graph Generation (TGG) approach, in which the relation is modeled and utilized explicitly via graph generation. Specifically, our proposed TGG contains two main components: (1) Graph generation for relation modeling. An attention-based aggregate network and a relation kernel are proposed, which generate instance-level graph based on a class-level prototype graph and visual features. Proximity information aggregating is guided by a multi-head graph attention mechanism, where seen and unseen features synthesized by GAN are revised as node embeddings. The relation kernel further generates edges with GCN and graph kernel method, to capture instance-level topological structure while tackling data imbalance and noise. (2) Relation propagation for relation utilization. A dual relation propagation approach is proposed, where relations captured by the generated graph are separately propagated from the seen and unseen subgraphs. The two propagations learn from each other in a dual learning fashion, which performs as an adaptation way for mitigating domain shift. All components are jointly optimized with a meta-learning strategy, and our TGG acts as an end-to-end framework unifying conventional zero-shot, generalized zero-shot and few-shot learning. Extensive experiments demonstrate that it consistently surpasses existing methods of the above three fields by a significant margin." @default.
- W2971036193 created "2019-09-05" @default.
- W2971036193 creator A5036676796 @default.
- W2971036193 creator A5074449757 @default.
- W2971036193 creator A5091646587 @default.
- W2971036193 date "2019-08-30" @default.
- W2971036193 modified "2023-09-23" @default.
- W2971036193 title "TGG: Transferable Graph Generation for Zero-shot and Few-shot Learning" @default.
- W2971036193 cites W1501856433 @default.
- W2971036193 cites W1522301498 @default.
- W2971036193 cites W1630959083 @default.
- W2971036193 cites W1662382123 @default.
- W2971036193 cites W1921523184 @default.
- W2971036193 cites W2070148066 @default.
- W2971036193 cites W2098411764 @default.
- W2971036193 cites W2099471712 @default.
- W2971036193 cites W2109317801 @default.
- W2971036193 cites W2116341502 @default.
- W2971036193 cites W2123024445 @default.
- W2971036193 cites W2124033848 @default.
- W2971036193 cites W2125389028 @default.
- W2971036193 cites W2194775991 @default.
- W2971036193 cites W2244807774 @default.
- W2971036193 cites W2289084343 @default.
- W2971036193 cites W2334493732 @default.
- W2971036193 cites W2519887557 @default.
- W2971036193 cites W2552383788 @default.
- W2971036193 cites W2596142952 @default.
- W2971036193 cites W2601450892 @default.
- W2971036193 cites W2611632661 @default.
- W2971036193 cites W2624431344 @default.
- W2971036193 cites W2737925311 @default.
- W2971036193 cites W2786103815 @default.
- W2971036193 cites W2792402990 @default.
- W2971036193 cites W2798426954 @default.
- W2971036193 cites W2806351858 @default.
- W2971036193 cites W2807352623 @default.
- W2971036193 cites W2902002028 @default.
- W2971036193 cites W2904378456 @default.
- W2971036193 cites W2924476266 @default.
- W2971036193 cites W2952647681 @default.
- W2971036193 cites W2962767366 @default.
- W2971036193 cites W2962879692 @default.
- W2971036193 cites W2963341924 @default.
- W2971036193 cites W2963486920 @default.
- W2971036193 cites W2963858333 @default.
- W2971036193 cites W2964086552 @default.
- W2971036193 cites W2964105864 @default.
- W2971036193 cites W2964207259 @default.
- W2971036193 cites W2964248207 @default.
- W2971036193 cites W2964321699 @default.
- W2971036193 cites W3091905774 @default.
- W2971036193 cites W3099554308 @default.
- W2971036193 cites W652269744 @default.
- W2971036193 hasPublicationYear "2019" @default.
- W2971036193 type Work @default.
- W2971036193 sameAs 2971036193 @default.
- W2971036193 citedByCount "0" @default.
- W2971036193 crossrefType "posted-content" @default.
- W2971036193 hasAuthorship W2971036193A5036676796 @default.
- W2971036193 hasAuthorship W2971036193A5074449757 @default.
- W2971036193 hasAuthorship W2971036193A5091646587 @default.
- W2971036193 hasConcept C100595998 @default.
- W2971036193 hasConcept C11413529 @default.
- W2971036193 hasConcept C119857082 @default.
- W2971036193 hasConcept C122280245 @default.
- W2971036193 hasConcept C12267149 @default.
- W2971036193 hasConcept C124101348 @default.
- W2971036193 hasConcept C132525143 @default.
- W2971036193 hasConcept C134517425 @default.
- W2971036193 hasConcept C154945302 @default.
- W2971036193 hasConcept C25343380 @default.
- W2971036193 hasConcept C41008148 @default.
- W2971036193 hasConcept C41608201 @default.
- W2971036193 hasConcept C80444323 @default.
- W2971036193 hasConceptScore W2971036193C100595998 @default.
- W2971036193 hasConceptScore W2971036193C11413529 @default.
- W2971036193 hasConceptScore W2971036193C119857082 @default.
- W2971036193 hasConceptScore W2971036193C122280245 @default.
- W2971036193 hasConceptScore W2971036193C12267149 @default.
- W2971036193 hasConceptScore W2971036193C124101348 @default.
- W2971036193 hasConceptScore W2971036193C132525143 @default.
- W2971036193 hasConceptScore W2971036193C134517425 @default.
- W2971036193 hasConceptScore W2971036193C154945302 @default.
- W2971036193 hasConceptScore W2971036193C25343380 @default.
- W2971036193 hasConceptScore W2971036193C41008148 @default.
- W2971036193 hasConceptScore W2971036193C41608201 @default.
- W2971036193 hasConceptScore W2971036193C80444323 @default.
- W2971036193 hasOpenAccess W2971036193 @default.
- W2971036193 hasRelatedWork W2799215068 @default.
- W2971036193 hasRelatedWork W2894982307 @default.
- W2971036193 hasRelatedWork W2946319046 @default.
- W2971036193 hasRelatedWork W2947908969 @default.
- W2971036193 hasRelatedWork W2962858681 @default.
- W2971036193 hasRelatedWork W2970733445 @default.
- W2971036193 hasRelatedWork W2981967134 @default.
- W2971036193 hasRelatedWork W3022049137 @default.
- W2971036193 hasRelatedWork W3023195247 @default.
- W2971036193 hasRelatedWork W3035388827 @default.
- W2971036193 hasRelatedWork W3118716190 @default.