Matches in SemOpenAlex for { <https://semopenalex.org/work/W2971198215> ?p ?o ?g. }
- W2971198215 endingPage "3093.e3" @default.
- W2971198215 startingPage "3087" @default.
- W2971198215 abstract "Carbon offsetting—receiving credit for reducing, avoiding, or sequestering carbon—has become part of the portfolio of solutions to mitigate carbon emissions, and thus climate change, through policy and voluntary markets, primarily by land-based re- or afforestation and preservation [1Brotto L. Pettenella D. Forest Management Auditing: Certification of Forest Products and Services. Routledge, 2018Crossref Scopus (4) Google Scholar, 2van Kooten G.C. Eagle A.J. Manley J. Smolak T. How costly are carbon offsets? A meta-analysis of carbon forest sinks.Environ. Sci. Policy. 2004; 7: 239-251Crossref Scopus (119) Google Scholar]. However, land is limiting, creating interest in a rapidly growing aquatic farming sector of seaweed aquaculture [3Chung I.K. Sondak C.F. Beardall J. The future of seaweed aquaculture in a rapidly changing world.Eur. J. Phycol. 2017; 52: 495-505Crossref Scopus (62) Google Scholar, 4Duarte C.M. Wu J. Xiao X. Bruhn A. Krause-Jensen D. Can seaweed farming play a role in climate change mitigation and adaptation?.Front. Mar. Sci. 2017; 4: 100Crossref Scopus (254) Google Scholar, 5Raven J.A. The possible roles of algae in restricting the increase in atmospheric CO2 and global temperature.Eur. J. Phycol. 2017; 52: 506-522Crossref Scopus (28) Google Scholar]. Synthesizing data from scientific literature, we assess the extent and cost of scaling seaweed aquaculture to provide sufficient CO2eq sequestration for several climate change mitigation scenarios, with a focus on the food sector—a major source of greenhouse gases [6Climate Action Tracker (2018). Data portal. Available at: https://climateactiontracker.org/data-portal/.Google Scholar]. Given known ecological constraints (nutrients and temperature), we found a substantial suitable area (ca. 48 million km2) for seaweed farming, which is largely unfarmed. Within its own industry, seaweed could create a carbon-neutral aquaculture sector with just 14% (mean = 25%) of current seaweed production (0.001% of suitable area). At a much larger scale, we find seaweed culturing extremely unlikely to offset global agriculture, in part due to production growth and cost constraints. Yet offsetting agriculture appears more feasible at a regional level, especially areas with strong climate policy, such as California (0.065% of suitable area). Importantly, seaweed farming can provide other benefits to coastlines affected by eutrophic, hypoxic, and/or acidic conditions [7Buschmann A.H. Camus C. Infante J. Neori A. Israel Á. Hernández-González M.C. Pereda S.V. Gomez-Pinchetti J.L. Golberg A. Tadmor-Shalev N. et al.Seaweed production: overview of the global state of exploitation, farming and emerging research activity.Eur. J. Phycol. 2017; 52: 391-406Crossref Scopus (336) Google Scholar, 8Alleway H.K. Gillies C.L. Bishop M.J. Gentry R.R. Theuerkauf S.J. Jones R. The ecosystem services of marine aquaculture: valuing benefits to people and nature.BioScience. 2019; 69: 59-68Crossref Scopus (77) Google Scholar], creating opportunities for seaweed farming to act as “charismatic carbon” that serves multiple purposes. Seaweed offsetting is not the sole solution to climate change, but it provides an invaluable new tool for a more sustainable future." @default.
- W2971198215 created "2019-09-05" @default.
- W2971198215 creator A5044574324 @default.
- W2971198215 creator A5044712268 @default.
- W2971198215 creator A5055948239 @default.
- W2971198215 creator A5056427982 @default.
- W2971198215 date "2019-09-01" @default.
- W2971198215 modified "2023-10-18" @default.
- W2971198215 title "Blue Growth Potential to Mitigate Climate Change through Seaweed Offsetting" @default.
- W2971198215 cites W1481646446 @default.
- W2971198215 cites W150522526 @default.
- W2971198215 cites W1596401330 @default.
- W2971198215 cites W1967783244 @default.
- W2971198215 cites W1970010942 @default.
- W2971198215 cites W1999803596 @default.
- W2971198215 cites W2016949000 @default.
- W2971198215 cites W2030401932 @default.
- W2971198215 cites W2046733927 @default.
- W2971198215 cites W2065538499 @default.
- W2971198215 cites W2065731998 @default.
- W2971198215 cites W2074570423 @default.
- W2971198215 cites W2088006907 @default.
- W2971198215 cites W2093693868 @default.
- W2971198215 cites W2101893616 @default.
- W2971198215 cites W2130231032 @default.
- W2971198215 cites W2132791458 @default.
- W2971198215 cites W2173144539 @default.
- W2971198215 cites W2274794646 @default.
- W2971198215 cites W2472722649 @default.
- W2971198215 cites W2480481978 @default.
- W2971198215 cites W2515714043 @default.
- W2971198215 cites W2519624182 @default.
- W2971198215 cites W2551267028 @default.
- W2971198215 cites W2557579433 @default.
- W2971198215 cites W2578643904 @default.
- W2971198215 cites W2589006297 @default.
- W2971198215 cites W2607336221 @default.
- W2971198215 cites W2612232223 @default.
- W2971198215 cites W2726033716 @default.
- W2971198215 cites W2754873569 @default.
- W2971198215 cites W2761880702 @default.
- W2971198215 cites W2762601467 @default.
- W2971198215 cites W2763342007 @default.
- W2971198215 cites W2769503867 @default.
- W2971198215 cites W2781567654 @default.
- W2971198215 cites W2785697432 @default.
- W2971198215 cites W2806569362 @default.
- W2971198215 cites W2809587579 @default.
- W2971198215 cites W2891768427 @default.
- W2971198215 cites W2898333233 @default.
- W2971198215 cites W2901160201 @default.
- W2971198215 cites W2904193833 @default.
- W2971198215 cites W2904777541 @default.
- W2971198215 cites W2908318527 @default.
- W2971198215 cites W2909944653 @default.
- W2971198215 cites W2915336810 @default.
- W2971198215 cites W2922144057 @default.
- W2971198215 cites W2931726831 @default.
- W2971198215 cites W2951507374 @default.
- W2971198215 cites W568293362 @default.
- W2971198215 doi "https://doi.org/10.1016/j.cub.2019.07.041" @default.
- W2971198215 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31474532" @default.
- W2971198215 hasPublicationYear "2019" @default.
- W2971198215 type Work @default.
- W2971198215 sameAs 2971198215 @default.
- W2971198215 citedByCount "143" @default.
- W2971198215 countsByYear W29711982152019 @default.
- W2971198215 countsByYear W29711982152020 @default.
- W2971198215 countsByYear W29711982152021 @default.
- W2971198215 countsByYear W29711982152022 @default.
- W2971198215 countsByYear W29711982152023 @default.
- W2971198215 crossrefType "journal-article" @default.
- W2971198215 hasAuthorship W2971198215A5044574324 @default.
- W2971198215 hasAuthorship W2971198215A5044712268 @default.
- W2971198215 hasAuthorship W2971198215A5055948239 @default.
- W2971198215 hasAuthorship W2971198215A5056427982 @default.
- W2971198215 hasBestOaLocation W29711982151 @default.
- W2971198215 hasConcept C132651083 @default.
- W2971198215 hasConcept C144133560 @default.
- W2971198215 hasConcept C18903297 @default.
- W2971198215 hasConcept C2779473830 @default.
- W2971198215 hasConcept C2909208804 @default.
- W2971198215 hasConcept C47737302 @default.
- W2971198215 hasConcept C505870484 @default.
- W2971198215 hasConcept C509746633 @default.
- W2971198215 hasConcept C55493867 @default.
- W2971198215 hasConcept C83867959 @default.
- W2971198215 hasConcept C86803240 @default.
- W2971198215 hasConcept C86909935 @default.
- W2971198215 hasConceptScore W2971198215C132651083 @default.
- W2971198215 hasConceptScore W2971198215C144133560 @default.
- W2971198215 hasConceptScore W2971198215C18903297 @default.
- W2971198215 hasConceptScore W2971198215C2779473830 @default.
- W2971198215 hasConceptScore W2971198215C2909208804 @default.
- W2971198215 hasConceptScore W2971198215C47737302 @default.
- W2971198215 hasConceptScore W2971198215C505870484 @default.
- W2971198215 hasConceptScore W2971198215C509746633 @default.
- W2971198215 hasConceptScore W2971198215C55493867 @default.