Matches in SemOpenAlex for { <https://semopenalex.org/work/W2971199605> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2971199605 abstract "With the increasing complexity of communication networks and the resulting threat of disruptions of mission critical services due to manual misconfiguration, automated verification is becoming a key element in today's network operation. In particular, it has recently been shown that a polynomial-time, automated verification of the policy-compliance of network configurations is possible for the important class of MPLS networks, even under failures. However, this approach, while providing polynomial runtimes, is still fairly slow in practice and only allows to detect but not fix configurations. This paper proposes a novel approach to speed up the analysis of network properties as well as to suggest configuration changes in case a network property is not satisfied. More specifically, our solution, DeepMPLS, allows to predict if a network property is satisfiable, and if not, aims to present a counter example. We also show that DeepMPLS may be used to propose new prefix-rewriting rules in the MPLS configuration in order to make it satisfiable. DeepMPLS can hence be used for fast predictions, before more rigorous analyses are performed. DeepMPLS is based on a new extension of graph-based neural networks. Our prototype implementation, using Tensorflow, achieves low execution times and high accuracies in real-world network topologies." @default.
- W2971199605 created "2019-09-05" @default.
- W2971199605 creator A5020988053 @default.
- W2971199605 creator A5066080641 @default.
- W2971199605 date "2019-05-20" @default.
- W2971199605 modified "2023-10-16" @default.
- W2971199605 title "DeepMPLS: fast analysis of MPLS configurations using deep learning" @default.
- W2971199605 cites W1501856433 @default.
- W2971199605 cites W1882012874 @default.
- W2971199605 cites W2116341502 @default.
- W2971199605 cites W2130210899 @default.
- W2971199605 cites W2157331557 @default.
- W2971199605 cites W2162408068 @default.
- W2971199605 cites W2488197787 @default.
- W2971199605 cites W2774771457 @default.
- W2971199605 cites W2793193452 @default.
- W2971199605 cites W2887330313 @default.
- W2971199605 cites W2902696225 @default.
- W2971199605 cites W2950898568 @default.
- W2971199605 cites W2952254971 @default.
- W2971199605 cites W2964113829 @default.
- W2971199605 doi "https://doi.org/10.23919/ifipnetworking46909.2019.8999396" @default.
- W2971199605 hasPublicationYear "2019" @default.
- W2971199605 type Work @default.
- W2971199605 sameAs 2971199605 @default.
- W2971199605 citedByCount "1" @default.
- W2971199605 countsByYear W29711996052021 @default.
- W2971199605 crossrefType "proceedings-article" @default.
- W2971199605 hasAuthorship W2971199605A5020988053 @default.
- W2971199605 hasAuthorship W2971199605A5066080641 @default.
- W2971199605 hasConcept C111472728 @default.
- W2971199605 hasConcept C11413529 @default.
- W2971199605 hasConcept C120314980 @default.
- W2971199605 hasConcept C129880937 @default.
- W2971199605 hasConcept C138885662 @default.
- W2971199605 hasConcept C154690210 @default.
- W2971199605 hasConcept C189950617 @default.
- W2971199605 hasConcept C199360897 @default.
- W2971199605 hasConcept C199845137 @default.
- W2971199605 hasConcept C26517878 @default.
- W2971199605 hasConcept C311688 @default.
- W2971199605 hasConcept C31258907 @default.
- W2971199605 hasConcept C38652104 @default.
- W2971199605 hasConcept C41008148 @default.
- W2971199605 hasConcept C5119721 @default.
- W2971199605 hasConcept C80444323 @default.
- W2971199605 hasConceptScore W2971199605C111472728 @default.
- W2971199605 hasConceptScore W2971199605C11413529 @default.
- W2971199605 hasConceptScore W2971199605C120314980 @default.
- W2971199605 hasConceptScore W2971199605C129880937 @default.
- W2971199605 hasConceptScore W2971199605C138885662 @default.
- W2971199605 hasConceptScore W2971199605C154690210 @default.
- W2971199605 hasConceptScore W2971199605C189950617 @default.
- W2971199605 hasConceptScore W2971199605C199360897 @default.
- W2971199605 hasConceptScore W2971199605C199845137 @default.
- W2971199605 hasConceptScore W2971199605C26517878 @default.
- W2971199605 hasConceptScore W2971199605C311688 @default.
- W2971199605 hasConceptScore W2971199605C31258907 @default.
- W2971199605 hasConceptScore W2971199605C38652104 @default.
- W2971199605 hasConceptScore W2971199605C41008148 @default.
- W2971199605 hasConceptScore W2971199605C5119721 @default.
- W2971199605 hasConceptScore W2971199605C80444323 @default.
- W2971199605 hasLocation W29711996051 @default.
- W2971199605 hasOpenAccess W2971199605 @default.
- W2971199605 hasPrimaryLocation W29711996051 @default.
- W2971199605 hasRelatedWork W16291142 @default.
- W2971199605 hasRelatedWork W189044676 @default.
- W2971199605 hasRelatedWork W2049138915 @default.
- W2971199605 hasRelatedWork W2318470634 @default.
- W2971199605 hasRelatedWork W2612708970 @default.
- W2971199605 hasRelatedWork W2743613188 @default.
- W2971199605 hasRelatedWork W2767657939 @default.
- W2971199605 hasRelatedWork W2890902148 @default.
- W2971199605 hasRelatedWork W2916774113 @default.
- W2971199605 hasRelatedWork W2952010348 @default.
- W2971199605 hasRelatedWork W2963981420 @default.
- W2971199605 hasRelatedWork W2980365679 @default.
- W2971199605 hasRelatedWork W2991644783 @default.
- W2971199605 hasRelatedWork W3014346869 @default.
- W2971199605 hasRelatedWork W3104896058 @default.
- W2971199605 hasRelatedWork W3113055379 @default.
- W2971199605 hasRelatedWork W3171821768 @default.
- W2971199605 hasRelatedWork W3185747021 @default.
- W2971199605 hasRelatedWork W43619379 @default.
- W2971199605 hasRelatedWork W640889915 @default.
- W2971199605 isParatext "false" @default.
- W2971199605 isRetracted "false" @default.
- W2971199605 magId "2971199605" @default.
- W2971199605 workType "article" @default.