Matches in SemOpenAlex for { <https://semopenalex.org/work/W2971209732> ?p ?o ?g. }
- W2971209732 endingPage "1596" @default.
- W2971209732 startingPage "1583" @default.
- W2971209732 abstract "The increasing amount of spatial data calls for new scalable query processing techniques. One of the techniques that are getting attention is data synopsis , which summarizes the data using samples or histograms and computes an approximate answer based on the synopsis. This general technique is used in selectivity estimation, clustering, partitioning, load balancing, and visualization, among others. This paper experimentally studies four spatial data synopsis techniques for three common data analysis problems, namely, selectivity estimation, k-means clustering, and spatial partitioning. We run an extensive experimental evaluation on both real and synthetic datasets of up to 2.7 billion records to study the trade-offs between the synopsis methods and their applicability in big spatial data analysis. For each of the three problems, we compare with baseline techniques that operate on the whole dataset and evaluate the synopsis generation time, the time for computing an approximate answer on the synopsis, and the accuracy of the result. We present our observations about when each synopsis technique performs best." @default.
- W2971209732 created "2019-09-05" @default.
- W2971209732 creator A5020410191 @default.
- W2971209732 creator A5045236138 @default.
- W2971209732 creator A5091292625 @default.
- W2971209732 date "2019-07-01" @default.
- W2971209732 modified "2023-10-16" @default.
- W2971209732 title "Comparing synopsis techniques for approximate spatial data analysis" @default.
- W2971209732 cites W126100971 @default.
- W2971209732 cites W1568832590 @default.
- W2971209732 cites W2020360881 @default.
- W2971209732 cites W2022858489 @default.
- W2971209732 cites W2045604576 @default.
- W2971209732 cites W2049003051 @default.
- W2971209732 cites W2057058417 @default.
- W2971209732 cites W2071425575 @default.
- W2971209732 cites W2071989194 @default.
- W2971209732 cites W2085827575 @default.
- W2971209732 cites W2087058693 @default.
- W2971209732 cites W2101939980 @default.
- W2971209732 cites W2108399535 @default.
- W2971209732 cites W2112452856 @default.
- W2971209732 cites W2122506655 @default.
- W2971209732 cites W2124539940 @default.
- W2971209732 cites W2128228580 @default.
- W2971209732 cites W2128869116 @default.
- W2971209732 cites W2131634374 @default.
- W2971209732 cites W2133571308 @default.
- W2971209732 cites W2141555863 @default.
- W2971209732 cites W2144661390 @default.
- W2971209732 cites W2148732449 @default.
- W2971209732 cites W2157011656 @default.
- W2971209732 cites W2165558283 @default.
- W2971209732 cites W2171419575 @default.
- W2971209732 cites W2187025990 @default.
- W2971209732 cites W2197411628 @default.
- W2971209732 cites W2204875540 @default.
- W2971209732 cites W2212047990 @default.
- W2971209732 cites W2280230190 @default.
- W2971209732 cites W2436533802 @default.
- W2971209732 cites W2564464327 @default.
- W2971209732 cites W2614354041 @default.
- W2971209732 cites W2798839954 @default.
- W2971209732 cites W2893116155 @default.
- W2971209732 cites W2997027240 @default.
- W2971209732 cites W4230112007 @default.
- W2971209732 cites W4232849517 @default.
- W2971209732 cites W4234792271 @default.
- W2971209732 cites W4241858315 @default.
- W2971209732 cites W4254407475 @default.
- W2971209732 cites W975351372 @default.
- W2971209732 doi "https://doi.org/10.14778/3342263.3342635" @default.
- W2971209732 hasPublicationYear "2019" @default.
- W2971209732 type Work @default.
- W2971209732 sameAs 2971209732 @default.
- W2971209732 citedByCount "14" @default.
- W2971209732 countsByYear W29712097322019 @default.
- W2971209732 countsByYear W29712097322020 @default.
- W2971209732 countsByYear W29712097322021 @default.
- W2971209732 countsByYear W29712097322022 @default.
- W2971209732 countsByYear W29712097322023 @default.
- W2971209732 crossrefType "journal-article" @default.
- W2971209732 hasAuthorship W2971209732A5020410191 @default.
- W2971209732 hasAuthorship W2971209732A5045236138 @default.
- W2971209732 hasAuthorship W2971209732A5091292625 @default.
- W2971209732 hasBestOaLocation W29712097322 @default.
- W2971209732 hasConcept C105795698 @default.
- W2971209732 hasConcept C115961682 @default.
- W2971209732 hasConcept C119857082 @default.
- W2971209732 hasConcept C124101348 @default.
- W2971209732 hasConcept C154945302 @default.
- W2971209732 hasConcept C159620131 @default.
- W2971209732 hasConcept C33923547 @default.
- W2971209732 hasConcept C36464697 @default.
- W2971209732 hasConcept C41008148 @default.
- W2971209732 hasConcept C48044578 @default.
- W2971209732 hasConcept C53533937 @default.
- W2971209732 hasConcept C73555534 @default.
- W2971209732 hasConcept C75684735 @default.
- W2971209732 hasConcept C77088390 @default.
- W2971209732 hasConceptScore W2971209732C105795698 @default.
- W2971209732 hasConceptScore W2971209732C115961682 @default.
- W2971209732 hasConceptScore W2971209732C119857082 @default.
- W2971209732 hasConceptScore W2971209732C124101348 @default.
- W2971209732 hasConceptScore W2971209732C154945302 @default.
- W2971209732 hasConceptScore W2971209732C159620131 @default.
- W2971209732 hasConceptScore W2971209732C33923547 @default.
- W2971209732 hasConceptScore W2971209732C36464697 @default.
- W2971209732 hasConceptScore W2971209732C41008148 @default.
- W2971209732 hasConceptScore W2971209732C48044578 @default.
- W2971209732 hasConceptScore W2971209732C53533937 @default.
- W2971209732 hasConceptScore W2971209732C73555534 @default.
- W2971209732 hasConceptScore W2971209732C75684735 @default.
- W2971209732 hasConceptScore W2971209732C77088390 @default.
- W2971209732 hasIssue "11" @default.
- W2971209732 hasLocation W29712097321 @default.
- W2971209732 hasLocation W29712097322 @default.
- W2971209732 hasOpenAccess W2971209732 @default.