Matches in SemOpenAlex for { <https://semopenalex.org/work/W2971262759> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2971262759 endingPage "10" @default.
- W2971262759 startingPage "1" @default.
- W2971262759 abstract "Deliberating the importance of rainfall in determining process such as agriculture, flood and water management, these study aim at evaluation of non-linear techniques on seasonal rainfall prediction (SRP). One of the non-linear method widely used is the Artificial Neural Networks (ANN) approach which has the ability of mapping between input and output patterns. The complexity of the atmospheric processes that generate rainfall makes quantitative forecasting of rainfall an extremely, difficult task. The research goal is to train/develop Artificial Neural Network model using backward propagation algorithm to predict seasonal Rainfall. Using some meteorological variables like, sea surface temperature (SST), U-wind at (surface, 700, 850 and 1000), air temperature, specific humidity, ITD and relative humidity. The study adopt monthly June-October (JJASO) rainfall data and January-May (JFMAM) monthly data of SST, U-wind at (surface, 700, 850 and 1000), air temperature, specific humidity and relative humidity for a period of 31 years (1986-2017) over Ikeja. The proposed ANN model architecture (9-4-1) in training the network using back-propagation algorithm indicated that the statistical performance of the model for predicting 2013 to 2017 (JJASO) rainfall amount indicated as follows; MSE, RMSE, and MAE were 7174, 84.7 and 18.6 respectively with a high statistical coefficient of variation of 94% when the ANN model prediction is validated with the observed rainfall. The result indicated that the propose ANN built network is reliable in prediction of seasonal rainfall amount in Ikeja with a minimal error." @default.
- W2971262759 created "2019-09-05" @default.
- W2971262759 creator A5056630272 @default.
- W2971262759 creator A5064227158 @default.
- W2971262759 date "2019-08-28" @default.
- W2971262759 modified "2023-09-24" @default.
- W2971262759 title "Seasonal Rainfall Prediction in Lagos, Nigeria Using Artificial Neural Network" @default.
- W2971262759 cites W1973844719 @default.
- W2971262759 cites W1984976741 @default.
- W2971262759 cites W1988115241 @default.
- W2971262759 cites W1997052296 @default.
- W2971262759 cites W2012208100 @default.
- W2971262759 cites W2026938221 @default.
- W2971262759 cites W2040916393 @default.
- W2971262759 cites W2060929823 @default.
- W2971262759 cites W2079436405 @default.
- W2971262759 cites W2092422911 @default.
- W2971262759 cites W2614107162 @default.
- W2971262759 doi "https://doi.org/10.9734/ajrcos/2019/v3i430100" @default.
- W2971262759 hasPublicationYear "2019" @default.
- W2971262759 type Work @default.
- W2971262759 sameAs 2971262759 @default.
- W2971262759 citedByCount "2" @default.
- W2971262759 countsByYear W29712627592022 @default.
- W2971262759 countsByYear W29712627592023 @default.
- W2971262759 crossrefType "journal-article" @default.
- W2971262759 hasAuthorship W2971262759A5056630272 @default.
- W2971262759 hasAuthorship W2971262759A5064227158 @default.
- W2971262759 hasBestOaLocation W29712627591 @default.
- W2971262759 hasConcept C105795698 @default.
- W2971262759 hasConcept C119857082 @default.
- W2971262759 hasConcept C127313418 @default.
- W2971262759 hasConcept C139945424 @default.
- W2971262759 hasConcept C151420433 @default.
- W2971262759 hasConcept C153294291 @default.
- W2971262759 hasConcept C158960510 @default.
- W2971262759 hasConcept C161067210 @default.
- W2971262759 hasConcept C205649164 @default.
- W2971262759 hasConcept C33923547 @default.
- W2971262759 hasConcept C39432304 @default.
- W2971262759 hasConcept C41008148 @default.
- W2971262759 hasConcept C49204034 @default.
- W2971262759 hasConcept C50644808 @default.
- W2971262759 hasConceptScore W2971262759C105795698 @default.
- W2971262759 hasConceptScore W2971262759C119857082 @default.
- W2971262759 hasConceptScore W2971262759C127313418 @default.
- W2971262759 hasConceptScore W2971262759C139945424 @default.
- W2971262759 hasConceptScore W2971262759C151420433 @default.
- W2971262759 hasConceptScore W2971262759C153294291 @default.
- W2971262759 hasConceptScore W2971262759C158960510 @default.
- W2971262759 hasConceptScore W2971262759C161067210 @default.
- W2971262759 hasConceptScore W2971262759C205649164 @default.
- W2971262759 hasConceptScore W2971262759C33923547 @default.
- W2971262759 hasConceptScore W2971262759C39432304 @default.
- W2971262759 hasConceptScore W2971262759C41008148 @default.
- W2971262759 hasConceptScore W2971262759C49204034 @default.
- W2971262759 hasConceptScore W2971262759C50644808 @default.
- W2971262759 hasLocation W29712627591 @default.
- W2971262759 hasOpenAccess W2971262759 @default.
- W2971262759 hasPrimaryLocation W29712627591 @default.
- W2971262759 hasRelatedWork W2010186591 @default.
- W2971262759 hasRelatedWork W2031288978 @default.
- W2971262759 hasRelatedWork W2328536221 @default.
- W2971262759 hasRelatedWork W2359063307 @default.
- W2971262759 hasRelatedWork W2388281031 @default.
- W2971262759 hasRelatedWork W2393277438 @default.
- W2971262759 hasRelatedWork W2747757746 @default.
- W2971262759 hasRelatedWork W2909943780 @default.
- W2971262759 hasRelatedWork W3162875150 @default.
- W2971262759 hasRelatedWork W3163056251 @default.
- W2971262759 isParatext "false" @default.
- W2971262759 isRetracted "false" @default.
- W2971262759 magId "2971262759" @default.
- W2971262759 workType "article" @default.