Matches in SemOpenAlex for { <https://semopenalex.org/work/W2971265710> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2971265710 abstract "The reliability of the electrical networks significantly impacts customer as well as energy providers’ bottom line. Connectivity between the various sectors of the electrical network has been expressively increased due to the high penetration of the new smart hardware and software tools. Therefore, Prognostics and Health Management (PHM) becoming a critical factor in the efficiency of capital-intensive corporations especially for the energy sector including the electrical power generation. Degradation based analysis is one of the valuable approaches of condition-based algorithms in order to obtain the reliability information especially for the highly reliable systems, critical assets, and recently developed products. The main purpose of the degradation-based models is to predict the future condition of the asset and perform the maintenance in an optimized time window before the actual failure of the system. Failure is said to have occurred as a soft failure event in these types of models. The main purpose of this study is to study the essentials in developing the first hitting time degradation-based models to predict the critical time for initiating the maintenance actions in order to optimize the effectiveness of the PHM leading to enhancing the value of the assets for the distributed electrical systems. The analyses are mostly focused on the critical components of the distributed electrical systems. The latest generations of the degradation models are exploring the potential improvements based on the more available information provided by smart devices to predict the critical failure time. Robust predictive models are beneficial to both energy providers and customers to enhance the overall reliability and risk of the system by initiating the maintenance before the physical failure occurs. In this paper, General Path (GP) and Autoregressive (AR) models as general methodologies for degradation models would be discussed in detail based on the depth of the analyses and available information." @default.
- W2971265710 created "2019-09-05" @default.
- W2971265710 creator A5016746812 @default.
- W2971265710 creator A5065603575 @default.
- W2971265710 creator A5068459729 @default.
- W2971265710 date "2019-06-01" @default.
- W2971265710 modified "2023-09-25" @default.
- W2971265710 title "Essentials to Develop Data-Driven Predictive Models of Prognostics and Health Management for Distributed Electrical Systems" @default.
- W2971265710 cites W1540327028 @default.
- W2971265710 cites W1967059276 @default.
- W2971265710 cites W1982574138 @default.
- W2971265710 cites W2001262230 @default.
- W2971265710 cites W2006266687 @default.
- W2971265710 cites W2090749763 @default.
- W2971265710 cites W2127103870 @default.
- W2971265710 cites W2149322672 @default.
- W2971265710 cites W2168614054 @default.
- W2971265710 cites W2364303559 @default.
- W2971265710 cites W2463813940 @default.
- W2971265710 cites W2610581982 @default.
- W2971265710 cites W2746651510 @default.
- W2971265710 cites W2775466977 @default.
- W2971265710 doi "https://doi.org/10.1109/icphm.2019.8819437" @default.
- W2971265710 hasPublicationYear "2019" @default.
- W2971265710 type Work @default.
- W2971265710 sameAs 2971265710 @default.
- W2971265710 citedByCount "1" @default.
- W2971265710 countsByYear W29712657102020 @default.
- W2971265710 crossrefType "proceedings-article" @default.
- W2971265710 hasAuthorship W2971265710A5016746812 @default.
- W2971265710 hasAuthorship W2971265710A5065603575 @default.
- W2971265710 hasAuthorship W2971265710A5068459729 @default.
- W2971265710 hasConcept C10138342 @default.
- W2971265710 hasConcept C112930515 @default.
- W2971265710 hasConcept C119599485 @default.
- W2971265710 hasConcept C121332964 @default.
- W2971265710 hasConcept C127413603 @default.
- W2971265710 hasConcept C129364497 @default.
- W2971265710 hasConcept C162324750 @default.
- W2971265710 hasConcept C163258240 @default.
- W2971265710 hasConcept C200601418 @default.
- W2971265710 hasConcept C2775846686 @default.
- W2971265710 hasConcept C2776517139 @default.
- W2971265710 hasConcept C38652104 @default.
- W2971265710 hasConcept C41008148 @default.
- W2971265710 hasConcept C43214815 @default.
- W2971265710 hasConcept C62520636 @default.
- W2971265710 hasConcept C71924100 @default.
- W2971265710 hasConcept C76178495 @default.
- W2971265710 hasConcept C89227174 @default.
- W2971265710 hasConceptScore W2971265710C10138342 @default.
- W2971265710 hasConceptScore W2971265710C112930515 @default.
- W2971265710 hasConceptScore W2971265710C119599485 @default.
- W2971265710 hasConceptScore W2971265710C121332964 @default.
- W2971265710 hasConceptScore W2971265710C127413603 @default.
- W2971265710 hasConceptScore W2971265710C129364497 @default.
- W2971265710 hasConceptScore W2971265710C162324750 @default.
- W2971265710 hasConceptScore W2971265710C163258240 @default.
- W2971265710 hasConceptScore W2971265710C200601418 @default.
- W2971265710 hasConceptScore W2971265710C2775846686 @default.
- W2971265710 hasConceptScore W2971265710C2776517139 @default.
- W2971265710 hasConceptScore W2971265710C38652104 @default.
- W2971265710 hasConceptScore W2971265710C41008148 @default.
- W2971265710 hasConceptScore W2971265710C43214815 @default.
- W2971265710 hasConceptScore W2971265710C62520636 @default.
- W2971265710 hasConceptScore W2971265710C71924100 @default.
- W2971265710 hasConceptScore W2971265710C76178495 @default.
- W2971265710 hasConceptScore W2971265710C89227174 @default.
- W2971265710 hasLocation W29712657101 @default.
- W2971265710 hasOpenAccess W2971265710 @default.
- W2971265710 hasPrimaryLocation W29712657101 @default.
- W2971265710 hasRelatedWork W1523247886 @default.
- W2971265710 hasRelatedWork W1838853353 @default.
- W2971265710 hasRelatedWork W1967372803 @default.
- W2971265710 hasRelatedWork W1989165503 @default.
- W2971265710 hasRelatedWork W2016354325 @default.
- W2971265710 hasRelatedWork W2086816605 @default.
- W2971265710 hasRelatedWork W2383842997 @default.
- W2971265710 hasRelatedWork W2540372044 @default.
- W2971265710 hasRelatedWork W2545519820 @default.
- W2971265710 hasRelatedWork W2593178896 @default.
- W2971265710 hasRelatedWork W2606634172 @default.
- W2971265710 hasRelatedWork W2795046343 @default.
- W2971265710 hasRelatedWork W2801500486 @default.
- W2971265710 hasRelatedWork W2808612991 @default.
- W2971265710 hasRelatedWork W2910410499 @default.
- W2971265710 hasRelatedWork W2920083100 @default.
- W2971265710 hasRelatedWork W2944938126 @default.
- W2971265710 hasRelatedWork W2949895184 @default.
- W2971265710 hasRelatedWork W2980476806 @default.
- W2971265710 hasRelatedWork W3008196157 @default.
- W2971265710 isParatext "false" @default.
- W2971265710 isRetracted "false" @default.
- W2971265710 magId "2971265710" @default.
- W2971265710 workType "article" @default.