Matches in SemOpenAlex for { <https://semopenalex.org/work/W2971265822> ?p ?o ?g. }
- W2971265822 abstract "We propose a method for off-road drivable area extraction using 3D LiDAR data with the goal of autonomous driving application. A specific deep learning framework is designed to deal with the ambiguous area, which is one of the main challenges in the off-road environment. To reduce the considerable demand for human-annotated data for network training, we utilize the information from vast quantities of vehicle paths and auto-generated obstacle labels. Using these auto-generated annotations, the proposed network can be trained using weakly supervised or semi-supervised methods, which can achieve better performance with fewer human annotations. The experiments on our dataset illustrate the reasonability of our framework and the validity of our weakly and semi-supervised methods." @default.
- W2971265822 created "2019-09-05" @default.
- W2971265822 creator A5000130442 @default.
- W2971265822 creator A5002980949 @default.
- W2971265822 creator A5025747893 @default.
- W2971265822 creator A5056743498 @default.
- W2971265822 creator A5058751400 @default.
- W2971265822 creator A5060007938 @default.
- W2971265822 date "2019-06-01" @default.
- W2971265822 modified "2023-10-16" @default.
- W2971265822 title "Off-Road Drivable Area Extraction Using 3D LiDAR Data" @default.
- W2971265822 cites W1525595943 @default.
- W2971265822 cites W1569925765 @default.
- W2971265822 cites W1903029394 @default.
- W2971265822 cites W2026520611 @default.
- W2971265822 cites W2037333893 @default.
- W2971265822 cites W2052411608 @default.
- W2971265822 cites W2085567176 @default.
- W2971265822 cites W2115579991 @default.
- W2971265822 cites W2117367877 @default.
- W2971265822 cites W2138361487 @default.
- W2971265822 cites W2138534490 @default.
- W2971265822 cites W2146575011 @default.
- W2971265822 cites W2147674777 @default.
- W2971265822 cites W2159132531 @default.
- W2971265822 cites W2168519618 @default.
- W2971265822 cites W2216863212 @default.
- W2971265822 cites W2340897893 @default.
- W2971265822 cites W2460157116 @default.
- W2971265822 cites W2770611768 @default.
- W2971265822 cites W2770960011 @default.
- W2971265822 cites W2791426782 @default.
- W2971265822 cites W2891733872 @default.
- W2971265822 cites W2963424321 @default.
- W2971265822 cites W97351935 @default.
- W2971265822 doi "https://doi.org/10.1109/ivs.2019.8814143" @default.
- W2971265822 hasPublicationYear "2019" @default.
- W2971265822 type Work @default.
- W2971265822 sameAs 2971265822 @default.
- W2971265822 citedByCount "15" @default.
- W2971265822 countsByYear W29712658222019 @default.
- W2971265822 countsByYear W29712658222020 @default.
- W2971265822 countsByYear W29712658222021 @default.
- W2971265822 countsByYear W29712658222022 @default.
- W2971265822 countsByYear W29712658222023 @default.
- W2971265822 crossrefType "proceedings-article" @default.
- W2971265822 hasAuthorship W2971265822A5000130442 @default.
- W2971265822 hasAuthorship W2971265822A5002980949 @default.
- W2971265822 hasAuthorship W2971265822A5025747893 @default.
- W2971265822 hasAuthorship W2971265822A5056743498 @default.
- W2971265822 hasAuthorship W2971265822A5058751400 @default.
- W2971265822 hasAuthorship W2971265822A5060007938 @default.
- W2971265822 hasBestOaLocation W29712658222 @default.
- W2971265822 hasConcept C108583219 @default.
- W2971265822 hasConcept C119857082 @default.
- W2971265822 hasConcept C124101348 @default.
- W2971265822 hasConcept C127313418 @default.
- W2971265822 hasConcept C136389625 @default.
- W2971265822 hasConcept C153180895 @default.
- W2971265822 hasConcept C154945302 @default.
- W2971265822 hasConcept C17744445 @default.
- W2971265822 hasConcept C199539241 @default.
- W2971265822 hasConcept C2776145971 @default.
- W2971265822 hasConcept C2776650193 @default.
- W2971265822 hasConcept C31972630 @default.
- W2971265822 hasConcept C41008148 @default.
- W2971265822 hasConcept C50644808 @default.
- W2971265822 hasConcept C51399673 @default.
- W2971265822 hasConcept C52622490 @default.
- W2971265822 hasConcept C62649853 @default.
- W2971265822 hasConceptScore W2971265822C108583219 @default.
- W2971265822 hasConceptScore W2971265822C119857082 @default.
- W2971265822 hasConceptScore W2971265822C124101348 @default.
- W2971265822 hasConceptScore W2971265822C127313418 @default.
- W2971265822 hasConceptScore W2971265822C136389625 @default.
- W2971265822 hasConceptScore W2971265822C153180895 @default.
- W2971265822 hasConceptScore W2971265822C154945302 @default.
- W2971265822 hasConceptScore W2971265822C17744445 @default.
- W2971265822 hasConceptScore W2971265822C199539241 @default.
- W2971265822 hasConceptScore W2971265822C2776145971 @default.
- W2971265822 hasConceptScore W2971265822C2776650193 @default.
- W2971265822 hasConceptScore W2971265822C31972630 @default.
- W2971265822 hasConceptScore W2971265822C41008148 @default.
- W2971265822 hasConceptScore W2971265822C50644808 @default.
- W2971265822 hasConceptScore W2971265822C51399673 @default.
- W2971265822 hasConceptScore W2971265822C52622490 @default.
- W2971265822 hasConceptScore W2971265822C62649853 @default.
- W2971265822 hasLocation W29712658221 @default.
- W2971265822 hasLocation W29712658222 @default.
- W2971265822 hasOpenAccess W2971265822 @default.
- W2971265822 hasPrimaryLocation W29712658221 @default.
- W2971265822 hasRelatedWork W1614742790 @default.
- W2971265822 hasRelatedWork W2036486025 @default.
- W2971265822 hasRelatedWork W2131513867 @default.
- W2971265822 hasRelatedWork W2952937263 @default.
- W2971265822 hasRelatedWork W3170999895 @default.
- W2971265822 hasRelatedWork W34092691 @default.
- W2971265822 hasRelatedWork W4287117940 @default.
- W2971265822 hasRelatedWork W4300902524 @default.
- W2971265822 hasRelatedWork W4312414840 @default.