Matches in SemOpenAlex for { <https://semopenalex.org/work/W2971304035> ?p ?o ?g. }
- W2971304035 endingPage "3717" @default.
- W2971304035 startingPage "3717" @default.
- W2971304035 abstract "This study developed a systematic approach with machine learning (ML) to apply the satellite remote sensing images, geographic information system (GIS) datasets, and spatial analysis for multi-temporal and event-based landslide susceptibility assessments at a regional scale. Random forests (RF) algorithm, one of the ML-based methods, was selected to construct the landslide susceptibility models. Different ratios of landslide and non-landslide samples were considered in the experiments. This study also employed a cost-sensitive analysis to adjust the decision boundary of the developed RF models with unbalanced sample ratios to improve the prediction results. Two strategies were investigated for model verification, namely space- and time-robustness. The space-robustness verification was designed for separating samples into training and examining data based on a single event or the same dataset. The time-robustness verification was designed for predicting subsequent landslide events by constructing a landslide susceptibility model based on a specific event or period. A total of 14 GIS-based landslide-related factors were used and derived from the spatial analyses. The developed landslide susceptibility models were tested in a watershed region in northern Taiwan with a landslide inventory of changes detected through multi-temporal satellite images and verified through field investigation. To further examine the developed models, the landslide susceptibility distributions of true occurrence samples and the generated landslide susceptibility maps were compared. The experiments demonstrated that the proposed method can provide more reasonable results, and the accuracies were found to be higher than 93% and 75% in most cases for space- and time-robustness verifications, respectively. In addition, the mapping results revealed that the multi-temporal models did not seem to be affected by the sample ratios included in the analyses." @default.
- W2971304035 created "2019-09-05" @default.
- W2971304035 creator A5002715768 @default.
- W2971304035 creator A5071117812 @default.
- W2971304035 date "2019-08-27" @default.
- W2971304035 modified "2023-10-02" @default.
- W2971304035 title "Improving GIS-based Landslide Susceptibility Assessments with Multi-temporal Remote Sensing and Machine Learning" @default.
- W2971304035 cites W1980361002 @default.
- W2971304035 cites W1990534165 @default.
- W2971304035 cites W1991259147 @default.
- W2971304035 cites W1991461719 @default.
- W2971304035 cites W1992023680 @default.
- W2971304035 cites W1996061706 @default.
- W2971304035 cites W1996104399 @default.
- W2971304035 cites W1998979050 @default.
- W2971304035 cites W2001571496 @default.
- W2971304035 cites W2007128964 @default.
- W2971304035 cites W2012089683 @default.
- W2971304035 cites W2012702170 @default.
- W2971304035 cites W2013973135 @default.
- W2971304035 cites W2017145427 @default.
- W2971304035 cites W2017363733 @default.
- W2971304035 cites W2018732570 @default.
- W2971304035 cites W2023020894 @default.
- W2971304035 cites W2024747153 @default.
- W2971304035 cites W2027575677 @default.
- W2971304035 cites W2029070726 @default.
- W2971304035 cites W2037028349 @default.
- W2971304035 cites W2039985772 @default.
- W2971304035 cites W2050599078 @default.
- W2971304035 cites W2051103995 @default.
- W2971304035 cites W2053927411 @default.
- W2971304035 cites W2058082754 @default.
- W2971304035 cites W2060557818 @default.
- W2971304035 cites W2060896356 @default.
- W2971304035 cites W2064319214 @default.
- W2971304035 cites W2069663627 @default.
- W2971304035 cites W2080134555 @default.
- W2971304035 cites W2081620141 @default.
- W2971304035 cites W2099206930 @default.
- W2971304035 cites W2100075837 @default.
- W2971304035 cites W2105189544 @default.
- W2971304035 cites W2105714409 @default.
- W2971304035 cites W2132424470 @default.
- W2971304035 cites W2134955829 @default.
- W2971304035 cites W2165979967 @default.
- W2971304035 cites W2261059368 @default.
- W2971304035 cites W2522712439 @default.
- W2971304035 cites W2534560594 @default.
- W2971304035 cites W2739032444 @default.
- W2971304035 cites W2878761843 @default.
- W2971304035 cites W2899689042 @default.
- W2971304035 cites W2905019064 @default.
- W2971304035 cites W2911964244 @default.
- W2971304035 cites W2913639836 @default.
- W2971304035 cites W2946041824 @default.
- W2971304035 cites W2948865504 @default.
- W2971304035 cites W2339914583 @default.
- W2971304035 doi "https://doi.org/10.3390/s19173717" @default.
- W2971304035 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6749503" @default.
- W2971304035 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31461983" @default.
- W2971304035 hasPublicationYear "2019" @default.
- W2971304035 type Work @default.
- W2971304035 sameAs 2971304035 @default.
- W2971304035 citedByCount "29" @default.
- W2971304035 countsByYear W29713040352020 @default.
- W2971304035 countsByYear W29713040352021 @default.
- W2971304035 countsByYear W29713040352022 @default.
- W2971304035 countsByYear W29713040352023 @default.
- W2971304035 crossrefType "journal-article" @default.
- W2971304035 hasAuthorship W2971304035A5002715768 @default.
- W2971304035 hasAuthorship W2971304035A5071117812 @default.
- W2971304035 hasBestOaLocation W29713040351 @default.
- W2971304035 hasConcept C104317684 @default.
- W2971304035 hasConcept C124101348 @default.
- W2971304035 hasConcept C127313418 @default.
- W2971304035 hasConcept C154945302 @default.
- W2971304035 hasConcept C169258074 @default.
- W2971304035 hasConcept C185592680 @default.
- W2971304035 hasConcept C186295008 @default.
- W2971304035 hasConcept C187320778 @default.
- W2971304035 hasConcept C205649164 @default.
- W2971304035 hasConcept C41008148 @default.
- W2971304035 hasConcept C41856607 @default.
- W2971304035 hasConcept C55493867 @default.
- W2971304035 hasConcept C58640448 @default.
- W2971304035 hasConcept C62649853 @default.
- W2971304035 hasConcept C63479239 @default.
- W2971304035 hasConceptScore W2971304035C104317684 @default.
- W2971304035 hasConceptScore W2971304035C124101348 @default.
- W2971304035 hasConceptScore W2971304035C127313418 @default.
- W2971304035 hasConceptScore W2971304035C154945302 @default.
- W2971304035 hasConceptScore W2971304035C169258074 @default.
- W2971304035 hasConceptScore W2971304035C185592680 @default.
- W2971304035 hasConceptScore W2971304035C186295008 @default.
- W2971304035 hasConceptScore W2971304035C187320778 @default.
- W2971304035 hasConceptScore W2971304035C205649164 @default.
- W2971304035 hasConceptScore W2971304035C41008148 @default.