Matches in SemOpenAlex for { <https://semopenalex.org/work/W2971307267> ?p ?o ?g. }
- W2971307267 endingPage "66" @default.
- W2971307267 startingPage "51" @default.
- W2971307267 abstract "Abstract This paper addresses the robust sparse recovery problem in the presence of impulsive measurement noise. In order to overcome the poor performance of l2-norm loss function with the outliers under the impulsive noise, we employ the l1-norm as the loss function for the residual error, which is less sensitive to outliers in the measurements than the popular l2-loss. To rise to the challenges introduced by the non-smooth problem, we first employ two smoothing strategies to approximate the l1-norm loss function: one introduces a relaxation factor in the l1-norm and the other uses the infimal convolution smoothing technique to transform it into a smooth counterpart. Both of them can approximate the l1-norm with arbitrary degree of accuracy and provide a Lipschitz continuous gradient loss function. Then, we employ the accelerated proximal gradient (APG) and monotone APG (mAPG) frameworks for the convex and non-convex regularization functions, respectively. The convergence performance is discussed for generalized regularization penalty. The simulation result demonstrates our conclusions and indicates that the algorithm proposed in this paper can improve the reconstruction quality." @default.
- W2971307267 created "2019-09-05" @default.
- W2971307267 creator A5021384155 @default.
- W2971307267 creator A5027874662 @default.
- W2971307267 creator A5051077603 @default.
- W2971307267 creator A5076729890 @default.
- W2971307267 creator A5082887216 @default.
- W2971307267 date "2020-01-01" @default.
- W2971307267 modified "2023-09-24" @default.
- W2971307267 title "A robust recovery algorithm with smoothing strategies" @default.
- W2971307267 cites W1499687860 @default.
- W2971307267 cites W1953936588 @default.
- W2971307267 cites W1965125844 @default.
- W2971307267 cites W1966661320 @default.
- W2971307267 cites W1972010412 @default.
- W2971307267 cites W1978333359 @default.
- W2971307267 cites W1991357077 @default.
- W2971307267 cites W1991857131 @default.
- W2971307267 cites W1993405482 @default.
- W2971307267 cites W1993751314 @default.
- W2971307267 cites W1997301483 @default.
- W2971307267 cites W2005995344 @default.
- W2971307267 cites W2029816571 @default.
- W2971307267 cites W2036088641 @default.
- W2971307267 cites W2056201402 @default.
- W2971307267 cites W2070740567 @default.
- W2971307267 cites W2073983116 @default.
- W2971307267 cites W2074682976 @default.
- W2971307267 cites W2090256922 @default.
- W2971307267 cites W2100556411 @default.
- W2971307267 cites W2107861471 @default.
- W2971307267 cites W2167732364 @default.
- W2971307267 cites W2407112810 @default.
- W2971307267 cites W2548019060 @default.
- W2971307267 cites W2560289294 @default.
- W2971307267 cites W2576873436 @default.
- W2971307267 cites W2604973793 @default.
- W2971307267 cites W2605217922 @default.
- W2971307267 cites W2620850570 @default.
- W2971307267 cites W2692241384 @default.
- W2971307267 cites W2772826071 @default.
- W2971307267 cites W2785145927 @default.
- W2971307267 cites W2882995882 @default.
- W2971307267 cites W2887288499 @default.
- W2971307267 cites W2915661357 @default.
- W2971307267 cites W2917459031 @default.
- W2971307267 cites W2949483514 @default.
- W2971307267 cites W2963172671 @default.
- W2971307267 cites W2963769561 @default.
- W2971307267 cites W2963960715 @default.
- W2971307267 cites W2989495362 @default.
- W2971307267 cites W3124114587 @default.
- W2971307267 doi "https://doi.org/10.1016/j.neucom.2019.08.035" @default.
- W2971307267 hasPublicationYear "2020" @default.
- W2971307267 type Work @default.
- W2971307267 sameAs 2971307267 @default.
- W2971307267 citedByCount "3" @default.
- W2971307267 countsByYear W29713072672021 @default.
- W2971307267 countsByYear W29713072672023 @default.
- W2971307267 crossrefType "journal-article" @default.
- W2971307267 hasAuthorship W2971307267A5021384155 @default.
- W2971307267 hasAuthorship W2971307267A5027874662 @default.
- W2971307267 hasAuthorship W2971307267A5051077603 @default.
- W2971307267 hasAuthorship W2971307267A5076729890 @default.
- W2971307267 hasAuthorship W2971307267A5082887216 @default.
- W2971307267 hasConcept C11413529 @default.
- W2971307267 hasConcept C119857082 @default.
- W2971307267 hasConcept C126255220 @default.
- W2971307267 hasConcept C153180895 @default.
- W2971307267 hasConcept C154945302 @default.
- W2971307267 hasConcept C31972630 @default.
- W2971307267 hasConcept C33923547 @default.
- W2971307267 hasConcept C3770464 @default.
- W2971307267 hasConcept C41008148 @default.
- W2971307267 hasConceptScore W2971307267C11413529 @default.
- W2971307267 hasConceptScore W2971307267C119857082 @default.
- W2971307267 hasConceptScore W2971307267C126255220 @default.
- W2971307267 hasConceptScore W2971307267C153180895 @default.
- W2971307267 hasConceptScore W2971307267C154945302 @default.
- W2971307267 hasConceptScore W2971307267C31972630 @default.
- W2971307267 hasConceptScore W2971307267C33923547 @default.
- W2971307267 hasConceptScore W2971307267C3770464 @default.
- W2971307267 hasConceptScore W2971307267C41008148 @default.
- W2971307267 hasFunder F4320321001 @default.
- W2971307267 hasLocation W29713072671 @default.
- W2971307267 hasOpenAccess W2971307267 @default.
- W2971307267 hasPrimaryLocation W29713072671 @default.
- W2971307267 hasRelatedWork W2961085424 @default.
- W2971307267 hasRelatedWork W3046775127 @default.
- W2971307267 hasRelatedWork W3107474891 @default.
- W2971307267 hasRelatedWork W3209574120 @default.
- W2971307267 hasRelatedWork W4205958290 @default.
- W2971307267 hasRelatedWork W4285260836 @default.
- W2971307267 hasRelatedWork W4286629047 @default.
- W2971307267 hasRelatedWork W4306321456 @default.
- W2971307267 hasRelatedWork W4306674287 @default.
- W2971307267 hasRelatedWork W4224009465 @default.
- W2971307267 hasVolume "371" @default.