Matches in SemOpenAlex for { <https://semopenalex.org/work/W2971309072> ?p ?o ?g. }
- W2971309072 endingPage "118648" @default.
- W2971309072 startingPage "118648" @default.
- W2971309072 abstract "Abstract In recent years, considerable interest has been given to the application of solar-powered cooling technology for use in buildings. Solar cooling systems look like to be a suitable substitution to the traditional vapour-compression electrical-driven machines. Solar systems have the advantage of using harmless working fluids, especially water. They also have the capacity to decrease the peak loads for electricity utilities and can contribute to a substantial reduction of the harmful CO2 emissions, which produce the notorious greenhouse effect that in turn is responsible for global warming and its devastating consequences. Amongst cooling technologies, low-temperature, solar-powered adsorption chillers/heat pumps are arising as a sustainable alternative to electrical vapour-compression systems. This study aims at examining the impact of design and operating factors on an adsorption cooling system’s performance in a residential application. An unsteady Computational Fluid Dynamics (CFD) combined with a heat and mass transfer model of the adsorption cooling system using adsorbent/water pair, was created in order to predict the following: (1) Flow behaviour; (2) Pressure; (3) Temperature; and (4) Water adsorption distributions. For possible adsorbents, both silica gel and zeolite 13X were considered; however, it is worth mentioning that silica gel was used at a lower working temperature range, as required by the operation. This makes silica gel an efficient option for solar/heat driven residential cooling applications. For the CFD model implemented equations, two geometries found in literature were employed for validation. Validation of the unsteady simulation results with experimental data found in literature showed favourable agreements. In a parametric study, various computation cases underwent simulation over the duration of the adsorption mode, which considered the following set of factors: heat transfer fluid (HTF) velocity (v); adsorbent bed thickness (lbed); heat exchanger tube thickness (b); and adsorbent particle diameter (dp) in order to perform a detailed investigation for main geometrical and operating parameters’ influence upon system performance. Results obtained from CFD disclosed the significance of v, lbed and dp whereas b was found having relatively minor modifications within the system performance. Additionally, the development of CFD combined with heat and mass transfer model serves as an effective tool for both simulation and optimisation of adsorption cooling systems as well as for performance predicting purposes." @default.
- W2971309072 created "2019-09-05" @default.
- W2971309072 creator A5013325069 @default.
- W2971309072 creator A5055740306 @default.
- W2971309072 date "2019-12-01" @default.
- W2971309072 modified "2023-09-24" @default.
- W2971309072 title "Coupled unsteady computational fluid dynamics with heat and mass transfer analysis of a solar/heat-powered adsorption cooling system for use in buildings" @default.
- W2971309072 cites W1868304720 @default.
- W2971309072 cites W1901155995 @default.
- W2971309072 cites W1964987100 @default.
- W2971309072 cites W1965059403 @default.
- W2971309072 cites W1977184900 @default.
- W2971309072 cites W1977490879 @default.
- W2971309072 cites W1979455457 @default.
- W2971309072 cites W1983938416 @default.
- W2971309072 cites W1996619171 @default.
- W2971309072 cites W1999564178 @default.
- W2971309072 cites W1999779630 @default.
- W2971309072 cites W2002731641 @default.
- W2971309072 cites W2005649553 @default.
- W2971309072 cites W2017331449 @default.
- W2971309072 cites W2024733517 @default.
- W2971309072 cites W2024820182 @default.
- W2971309072 cites W2028223438 @default.
- W2971309072 cites W2030630383 @default.
- W2971309072 cites W2031489658 @default.
- W2971309072 cites W2032978956 @default.
- W2971309072 cites W2038438225 @default.
- W2971309072 cites W2044548428 @default.
- W2971309072 cites W2050855334 @default.
- W2971309072 cites W2055968000 @default.
- W2971309072 cites W2057392606 @default.
- W2971309072 cites W2060648857 @default.
- W2971309072 cites W2063462117 @default.
- W2971309072 cites W2064103857 @default.
- W2971309072 cites W2065948719 @default.
- W2971309072 cites W2070827788 @default.
- W2971309072 cites W2072407339 @default.
- W2971309072 cites W2074641850 @default.
- W2971309072 cites W2078987233 @default.
- W2971309072 cites W2081670618 @default.
- W2971309072 cites W2083588817 @default.
- W2971309072 cites W2084014349 @default.
- W2971309072 cites W2084077115 @default.
- W2971309072 cites W2085400928 @default.
- W2971309072 cites W2089900502 @default.
- W2971309072 cites W2090137593 @default.
- W2971309072 cites W2090412547 @default.
- W2971309072 cites W2092173707 @default.
- W2971309072 cites W2093189343 @default.
- W2971309072 cites W2094694541 @default.
- W2971309072 cites W2096924038 @default.
- W2971309072 cites W2114477550 @default.
- W2971309072 cites W2115574974 @default.
- W2971309072 cites W2142461936 @default.
- W2971309072 cites W2375531128 @default.
- W2971309072 cites W2401029937 @default.
- W2971309072 cites W2412346335 @default.
- W2971309072 cites W2477282954 @default.
- W2971309072 cites W2528378238 @default.
- W2971309072 cites W2528411043 @default.
- W2971309072 cites W2554677845 @default.
- W2971309072 cites W2593575313 @default.
- W2971309072 cites W2611854444 @default.
- W2971309072 cites W2767642222 @default.
- W2971309072 cites W2794463238 @default.
- W2971309072 cites W2797247155 @default.
- W2971309072 cites W2801698498 @default.
- W2971309072 doi "https://doi.org/10.1016/j.ijheatmasstransfer.2019.118648" @default.
- W2971309072 hasPublicationYear "2019" @default.
- W2971309072 type Work @default.
- W2971309072 sameAs 2971309072 @default.
- W2971309072 citedByCount "18" @default.
- W2971309072 countsByYear W29713090722020 @default.
- W2971309072 countsByYear W29713090722021 @default.
- W2971309072 countsByYear W29713090722022 @default.
- W2971309072 countsByYear W29713090722023 @default.
- W2971309072 crossrefType "journal-article" @default.
- W2971309072 hasAuthorship W2971309072A5013325069 @default.
- W2971309072 hasAuthorship W2971309072A5055740306 @default.
- W2971309072 hasConcept C116915560 @default.
- W2971309072 hasConcept C121332964 @default.
- W2971309072 hasConcept C127413603 @default.
- W2971309072 hasConcept C150394285 @default.
- W2971309072 hasConcept C1633027 @default.
- W2971309072 hasConcept C178790620 @default.
- W2971309072 hasConcept C185592680 @default.
- W2971309072 hasConcept C192562407 @default.
- W2971309072 hasConcept C2994001752 @default.
- W2971309072 hasConcept C39432304 @default.
- W2971309072 hasConcept C50517652 @default.
- W2971309072 hasConcept C51038369 @default.
- W2971309072 hasConcept C57879066 @default.
- W2971309072 hasConcept C7694927 @default.
- W2971309072 hasConcept C97355855 @default.
- W2971309072 hasConceptScore W2971309072C116915560 @default.
- W2971309072 hasConceptScore W2971309072C121332964 @default.
- W2971309072 hasConceptScore W2971309072C127413603 @default.