Matches in SemOpenAlex for { <https://semopenalex.org/work/W2971333596> ?p ?o ?g. }
- W2971333596 endingPage "1994" @default.
- W2971333596 startingPage "1994" @default.
- W2971333596 abstract "This article presents a novel deep learning method for semi-automated detection of historic mining pits using aerial LiDAR data. The recent emergence of national scale remotely sensed datasets has created the potential to greatly increase the rate of analysis and recording of cultural heritage sites. However, the time and resources required to process these datasets in traditional desktop surveys presents a near insurmountable challenge. The use of artificial intelligence to carry out preliminary processing of vast areas could enable experts to prioritize their prospection focus; however, success so far has been hindered by the lack of large training datasets in this field. This study develops an innovative transfer learning approach, utilizing a deep convolutional neural network initially trained on Lunar LiDAR datasets and reapplied here in an archaeological context. Recall rates of 80% and 83% were obtained on the 0.5 m and 0.25 m resolution datasets respectively, with false positive rates maintained below 20%. These results are state of the art and demonstrate that this model is an efficient, effective tool for semi-automated object detection for this type of archaeological objects. Further tests indicated strong potential for detection of other types of archaeological objects when trained accordingly." @default.
- W2971333596 created "2019-09-05" @default.
- W2971333596 creator A5000502919 @default.
- W2971333596 creator A5025343213 @default.
- W2971333596 creator A5034745100 @default.
- W2971333596 creator A5090505103 @default.
- W2971333596 date "2019-08-23" @default.
- W2971333596 modified "2023-09-30" @default.
- W2971333596 title "Bringing Lunar LiDAR Back Down to Earth: Mapping Our Industrial Heritage through Deep Transfer Learning" @default.
- W2971333596 cites W1861492603 @default.
- W2971333596 cites W1901129140 @default.
- W2971333596 cites W1990868684 @default.
- W2971333596 cites W2030039047 @default.
- W2971333596 cites W2048397240 @default.
- W2971333596 cites W2057781725 @default.
- W2971333596 cites W2062118960 @default.
- W2971333596 cites W2066265557 @default.
- W2971333596 cites W2074624285 @default.
- W2971333596 cites W2088897029 @default.
- W2971333596 cites W2091460873 @default.
- W2971333596 cites W2095232025 @default.
- W2971333596 cites W2102605133 @default.
- W2971333596 cites W2112796928 @default.
- W2971333596 cites W2183341477 @default.
- W2971333596 cites W2213196136 @default.
- W2971333596 cites W2236626706 @default.
- W2971333596 cites W2253590344 @default.
- W2971333596 cites W2281535235 @default.
- W2971333596 cites W2330414379 @default.
- W2971333596 cites W2339652516 @default.
- W2971333596 cites W2512351403 @default.
- W2971333596 cites W2576938664 @default.
- W2971333596 cites W2792008101 @default.
- W2971333596 cites W2793222099 @default.
- W2971333596 cites W2795165731 @default.
- W2971333596 cites W2804436788 @default.
- W2971333596 cites W2807045604 @default.
- W2971333596 cites W2809426059 @default.
- W2971333596 cites W2864198995 @default.
- W2971333596 cites W2883610912 @default.
- W2971333596 cites W2903009718 @default.
- W2971333596 cites W2916207499 @default.
- W2971333596 cites W2922858103 @default.
- W2971333596 cites W2925480424 @default.
- W2971333596 cites W2934396264 @default.
- W2971333596 cites W2963150697 @default.
- W2971333596 cites W2963881378 @default.
- W2971333596 cites W3104341624 @default.
- W2971333596 doi "https://doi.org/10.3390/rs11171994" @default.
- W2971333596 hasPublicationYear "2019" @default.
- W2971333596 type Work @default.
- W2971333596 sameAs 2971333596 @default.
- W2971333596 citedByCount "35" @default.
- W2971333596 countsByYear W29713335962020 @default.
- W2971333596 countsByYear W29713335962021 @default.
- W2971333596 countsByYear W29713335962022 @default.
- W2971333596 countsByYear W29713335962023 @default.
- W2971333596 crossrefType "journal-article" @default.
- W2971333596 hasAuthorship W2971333596A5000502919 @default.
- W2971333596 hasAuthorship W2971333596A5025343213 @default.
- W2971333596 hasAuthorship W2971333596A5034745100 @default.
- W2971333596 hasAuthorship W2971333596A5090505103 @default.
- W2971333596 hasBestOaLocation W29713335961 @default.
- W2971333596 hasConcept C108583219 @default.
- W2971333596 hasConcept C120665830 @default.
- W2971333596 hasConcept C121332964 @default.
- W2971333596 hasConcept C127313418 @default.
- W2971333596 hasConcept C150899416 @default.
- W2971333596 hasConcept C153180895 @default.
- W2971333596 hasConcept C154945302 @default.
- W2971333596 hasConcept C166957645 @default.
- W2971333596 hasConcept C192209626 @default.
- W2971333596 hasConcept C205649164 @default.
- W2971333596 hasConcept C2776151529 @default.
- W2971333596 hasConcept C2778426922 @default.
- W2971333596 hasConcept C2779343474 @default.
- W2971333596 hasConcept C41008148 @default.
- W2971333596 hasConcept C51399673 @default.
- W2971333596 hasConcept C60671577 @default.
- W2971333596 hasConcept C62649853 @default.
- W2971333596 hasConcept C81363708 @default.
- W2971333596 hasConceptScore W2971333596C108583219 @default.
- W2971333596 hasConceptScore W2971333596C120665830 @default.
- W2971333596 hasConceptScore W2971333596C121332964 @default.
- W2971333596 hasConceptScore W2971333596C127313418 @default.
- W2971333596 hasConceptScore W2971333596C150899416 @default.
- W2971333596 hasConceptScore W2971333596C153180895 @default.
- W2971333596 hasConceptScore W2971333596C154945302 @default.
- W2971333596 hasConceptScore W2971333596C166957645 @default.
- W2971333596 hasConceptScore W2971333596C192209626 @default.
- W2971333596 hasConceptScore W2971333596C205649164 @default.
- W2971333596 hasConceptScore W2971333596C2776151529 @default.
- W2971333596 hasConceptScore W2971333596C2778426922 @default.
- W2971333596 hasConceptScore W2971333596C2779343474 @default.
- W2971333596 hasConceptScore W2971333596C41008148 @default.
- W2971333596 hasConceptScore W2971333596C51399673 @default.
- W2971333596 hasConceptScore W2971333596C60671577 @default.
- W2971333596 hasConceptScore W2971333596C62649853 @default.