Matches in SemOpenAlex for { <https://semopenalex.org/work/W2971344959> ?p ?o ?g. }
- W2971344959 abstract "We improve upon the local bound in the depth aspect for sup-norms of newforms on $D^times$ where $D$ is an indefinite quaternion division algebra over $mathbb{Q}$. Our sup-norm bound implies a depth-aspect subconvexity bound for $L(1/2, f times theta_chi)$, where $f$ is a (varying) newform on $D^times$ of level $p^n$, and $theta_chi$ is an (essentially fixed) automorphic form on $mathrm{GL}_2$ obtained as the theta lift of a Hecke character $chi$ on a quadratic field. For the proof, we augment the amplification method with a novel filtration argument and a recent counting result proved by the second-named author to reduce to showing strong quantitative decay of matrix coefficients of local newvectors along compact subsets, which we establish via $p$-adic stationary phase analysis. Furthermore, we prove a general upper bound in the level aspect for sup-norms of automorphic forms belonging to emph{any} family whose associated matrix coefficients have such a decay property." @default.
- W2971344959 created "2019-09-05" @default.
- W2971344959 creator A5007562898 @default.
- W2971344959 creator A5028120984 @default.
- W2971344959 date "2019-05-15" @default.
- W2971344959 modified "2023-09-25" @default.
- W2971344959 title "Sup-norms of eigenfunctions in the level aspect for compact arithmetic surfaces, II: newforms and subconvexity" @default.
- W2971344959 cites W1479878187 @default.
- W2971344959 cites W1522152670 @default.
- W2971344959 cites W1552735030 @default.
- W2971344959 cites W1568833599 @default.
- W2971344959 cites W1923179680 @default.
- W2971344959 cites W1986877071 @default.
- W2971344959 cites W1998445629 @default.
- W2971344959 cites W2030914290 @default.
- W2971344959 cites W2031572484 @default.
- W2971344959 cites W2058429745 @default.
- W2971344959 cites W2156948039 @default.
- W2971344959 cites W2238544751 @default.
- W2971344959 cites W2316764719 @default.
- W2971344959 cites W2335396181 @default.
- W2971344959 cites W2415125280 @default.
- W2971344959 cites W2526496323 @default.
- W2971344959 cites W2567813919 @default.
- W2971344959 cites W2583230257 @default.
- W2971344959 cites W2762901337 @default.
- W2971344959 cites W2784561144 @default.
- W2971344959 cites W2898280133 @default.
- W2971344959 cites W2903883535 @default.
- W2971344959 cites W2921107908 @default.
- W2971344959 cites W2963360554 @default.
- W2971344959 cites W2983720009 @default.
- W2971344959 cites W2996654136 @default.
- W2971344959 cites W3047516950 @default.
- W2971344959 cites W3094024442 @default.
- W2971344959 cites W3098006925 @default.
- W2971344959 cites W3098059106 @default.
- W2971344959 cites W3100258557 @default.
- W2971344959 cites W3104659843 @default.
- W2971344959 cites W3104697552 @default.
- W2971344959 cites W3105050116 @default.
- W2971344959 cites W585486578 @default.
- W2971344959 cites W62210103 @default.
- W2971344959 doi "https://doi.org/10.48550/arxiv.1905.06295" @default.
- W2971344959 hasPublicationYear "2019" @default.
- W2971344959 type Work @default.
- W2971344959 sameAs 2971344959 @default.
- W2971344959 citedByCount "1" @default.
- W2971344959 countsByYear W29713449592020 @default.
- W2971344959 crossrefType "posted-content" @default.
- W2971344959 hasAuthorship W2971344959A5007562898 @default.
- W2971344959 hasAuthorship W2971344959A5028120984 @default.
- W2971344959 hasBestOaLocation W29713449591 @default.
- W2971344959 hasConcept C106487976 @default.
- W2971344959 hasConcept C114614502 @default.
- W2971344959 hasConcept C124101348 @default.
- W2971344959 hasConcept C129844170 @default.
- W2971344959 hasConcept C134306372 @default.
- W2971344959 hasConcept C139002025 @default.
- W2971344959 hasConcept C159985019 @default.
- W2971344959 hasConcept C17744445 @default.
- W2971344959 hasConcept C191795146 @default.
- W2971344959 hasConcept C192562407 @default.
- W2971344959 hasConcept C199539241 @default.
- W2971344959 hasConcept C202444582 @default.
- W2971344959 hasConcept C2524010 @default.
- W2971344959 hasConcept C33923547 @default.
- W2971344959 hasConcept C41008148 @default.
- W2971344959 hasConcept C77553402 @default.
- W2971344959 hasConcept C94375191 @default.
- W2971344959 hasConcept C9652623 @default.
- W2971344959 hasConceptScore W2971344959C106487976 @default.
- W2971344959 hasConceptScore W2971344959C114614502 @default.
- W2971344959 hasConceptScore W2971344959C124101348 @default.
- W2971344959 hasConceptScore W2971344959C129844170 @default.
- W2971344959 hasConceptScore W2971344959C134306372 @default.
- W2971344959 hasConceptScore W2971344959C139002025 @default.
- W2971344959 hasConceptScore W2971344959C159985019 @default.
- W2971344959 hasConceptScore W2971344959C17744445 @default.
- W2971344959 hasConceptScore W2971344959C191795146 @default.
- W2971344959 hasConceptScore W2971344959C192562407 @default.
- W2971344959 hasConceptScore W2971344959C199539241 @default.
- W2971344959 hasConceptScore W2971344959C202444582 @default.
- W2971344959 hasConceptScore W2971344959C2524010 @default.
- W2971344959 hasConceptScore W2971344959C33923547 @default.
- W2971344959 hasConceptScore W2971344959C41008148 @default.
- W2971344959 hasConceptScore W2971344959C77553402 @default.
- W2971344959 hasConceptScore W2971344959C94375191 @default.
- W2971344959 hasConceptScore W2971344959C9652623 @default.
- W2971344959 hasLocation W29713449591 @default.
- W2971344959 hasLocation W29713449592 @default.
- W2971344959 hasOpenAccess W2971344959 @default.
- W2971344959 hasPrimaryLocation W29713449591 @default.
- W2971344959 hasRelatedWork W2012487179 @default.
- W2971344959 hasRelatedWork W2038812594 @default.
- W2971344959 hasRelatedWork W2089408657 @default.
- W2971344959 hasRelatedWork W2137593033 @default.
- W2971344959 hasRelatedWork W2146492913 @default.
- W2971344959 hasRelatedWork W2374829073 @default.
- W2971344959 hasRelatedWork W2952422904 @default.