Matches in SemOpenAlex for { <https://semopenalex.org/work/W2971348843> ?p ?o ?g. }
- W2971348843 endingPage "105582" @default.
- W2971348843 startingPage "105582" @default.
- W2971348843 abstract "Floating Treatment Wetlands (FTWs), comprising a floating matrix or framework vegetated with emergent wetland plants whose roots extend into the water below, have potential for treatment of wastewaters. Low oxygen concentrations beneath FTWs and wash-out of microbial communities can limit decomposition of organic matter and nitrification of ammonium-N in domestic wastewaters. This study aimed to test the utility of two different configurations of FTWs supplemented with mechanically aerated Biofilm Attachment Surfaces (BAS) to provide post-primary treatment of domestic wastewater. Two pilot-scale FTW treatment trains were developed at a domestic wastewater treatment plant in Hamilton, New Zealand using ten 1 m3 volume tanks, with 1 m2 square floating mats planted with Carex virgata. These were: (1) a single-pass (direct flow-through) system comprising an aerated FTW tank with subsurface BAS followed by four non-aerated FTW tanks in series, where (endogenous carbon inputs from wetland plants, along with organic carbon from the wastewater would promote denitrification; and (2) a recirculating system incorporating a pre-anoxic phase settling tank with FTW and BAS, followed by an aerated FTW tank with BAS from which 4/5 of the outflow was recirculated back to the initial anoxic stage where the (endogenous) organic matter in the incoming wastewater would provide the primary source of carbon to promote denitrification. The remaining 1/5 flowed into three non-aerated FTWs in series. Performance of each treatment stage was monitored monthly for one year from February 2015 to January 2016 for organic matter (BOD5: Biochemical Oxygen Demand; TSS: Total Suspended Solids), nutrients (nitrogen and phosphorus) and E. coli removal. The single-pass system had almost complete removal of both TSS and cBOD5 with >93%, maintaining the final effluent TSS and cBOD5 concentrations at below 5 and 4 mg L−1 respectively. The single-pass system had a lower NH4-N reduction (4.9 g m−2 d−1) compared with that in the recirculating system (6.9 g m−2 d−1), but achieved higher denitrification (1.7 g m−2 d−1) than that in the recirculating system (1.4 g m−2 d−1) as more organic carbon from the inflow wastewater was available in the single-pass system for denitrification. The recirculating FTW system achieved slightly higher removal of Total-P (TP: 44.9%) and Dissolved Reactive Phosphorus (DRP: 29.7%) than those in the single pass FTW system (TP: 36.7%; DRP: 24.3%), and both systems had a similar ~3-log E. coli reduction (from 106 to 103 MPN 100 ml−1) during the one-year experimental period. This one-year pilot-scale FTW study showed that FTWs supplemented with mechanically aerated BAS could be a practically option to retrofit existing waste stabilisation ponds to enhance organic matter, nitrogen and E. coli reduction. Furthermore, they may have some potential advantages over other types of intensified constructed wetlands, since they don’t need costly graded gravel (or other solid media), provide ready access to aeration diffusers for maintenance purposes, have low susceptibility to clogging, and can be more readily de-sludged if required." @default.
- W2971348843 created "2019-09-05" @default.
- W2971348843 creator A5059421348 @default.
- W2971348843 creator A5065079178 @default.
- W2971348843 creator A5090162434 @default.
- W2971348843 date "2019-11-01" @default.
- W2971348843 modified "2023-10-17" @default.
- W2971348843 title "Floating treatment wetlands supplemented with aeration and biofilm attachment surfaces for efficient domestic wastewater treatment" @default.
- W2971348843 cites W1571798824 @default.
- W2971348843 cites W1969928183 @default.
- W2971348843 cites W1974048887 @default.
- W2971348843 cites W1985488738 @default.
- W2971348843 cites W1987828564 @default.
- W2971348843 cites W1990342784 @default.
- W2971348843 cites W1997249575 @default.
- W2971348843 cites W2019303616 @default.
- W2971348843 cites W2023775515 @default.
- W2971348843 cites W2029192909 @default.
- W2971348843 cites W2029372704 @default.
- W2971348843 cites W2031732890 @default.
- W2971348843 cites W2032292134 @default.
- W2971348843 cites W2032425995 @default.
- W2971348843 cites W2034877144 @default.
- W2971348843 cites W2044458959 @default.
- W2971348843 cites W2051225228 @default.
- W2971348843 cites W2067621980 @default.
- W2971348843 cites W2074992507 @default.
- W2971348843 cites W2076828239 @default.
- W2971348843 cites W2087683702 @default.
- W2971348843 cites W2088068890 @default.
- W2971348843 cites W2089352571 @default.
- W2971348843 cites W2114978875 @default.
- W2971348843 cites W2154332936 @default.
- W2971348843 cites W2156864512 @default.
- W2971348843 cites W2168439972 @default.
- W2971348843 cites W2170265317 @default.
- W2971348843 cites W2240648273 @default.
- W2971348843 cites W2272356351 @default.
- W2971348843 cites W2400375893 @default.
- W2971348843 cites W2523766702 @default.
- W2971348843 cites W2593756621 @default.
- W2971348843 cites W2613456749 @default.
- W2971348843 cites W2734572194 @default.
- W2971348843 cites W2792283416 @default.
- W2971348843 cites W2808151258 @default.
- W2971348843 cites W2883708006 @default.
- W2971348843 cites W2904793436 @default.
- W2971348843 cites W2906968634 @default.
- W2971348843 cites W2962884911 @default.
- W2971348843 cites W4245342544 @default.
- W2971348843 cites W91118756 @default.
- W2971348843 doi "https://doi.org/10.1016/j.ecoleng.2019.105582" @default.
- W2971348843 hasPublicationYear "2019" @default.
- W2971348843 type Work @default.
- W2971348843 sameAs 2971348843 @default.
- W2971348843 citedByCount "29" @default.
- W2971348843 countsByYear W29713488432020 @default.
- W2971348843 countsByYear W29713488432021 @default.
- W2971348843 countsByYear W29713488432022 @default.
- W2971348843 countsByYear W29713488432023 @default.
- W2971348843 crossrefType "journal-article" @default.
- W2971348843 hasAuthorship W2971348843A5059421348 @default.
- W2971348843 hasAuthorship W2971348843A5065079178 @default.
- W2971348843 hasAuthorship W2971348843A5090162434 @default.
- W2971348843 hasConcept C107872376 @default.
- W2971348843 hasConcept C108970007 @default.
- W2971348843 hasConcept C127413603 @default.
- W2971348843 hasConcept C164752452 @default.
- W2971348843 hasConcept C178790620 @default.
- W2971348843 hasConcept C185592680 @default.
- W2971348843 hasConcept C18903297 @default.
- W2971348843 hasConcept C2780367215 @default.
- W2971348843 hasConcept C36574619 @default.
- W2971348843 hasConcept C39432304 @default.
- W2971348843 hasConcept C48743137 @default.
- W2971348843 hasConcept C537208039 @default.
- W2971348843 hasConcept C548081761 @default.
- W2971348843 hasConcept C57442070 @default.
- W2971348843 hasConcept C73593433 @default.
- W2971348843 hasConcept C86803240 @default.
- W2971348843 hasConcept C86922832 @default.
- W2971348843 hasConcept C87717796 @default.
- W2971348843 hasConcept C94061648 @default.
- W2971348843 hasConceptScore W2971348843C107872376 @default.
- W2971348843 hasConceptScore W2971348843C108970007 @default.
- W2971348843 hasConceptScore W2971348843C127413603 @default.
- W2971348843 hasConceptScore W2971348843C164752452 @default.
- W2971348843 hasConceptScore W2971348843C178790620 @default.
- W2971348843 hasConceptScore W2971348843C185592680 @default.
- W2971348843 hasConceptScore W2971348843C18903297 @default.
- W2971348843 hasConceptScore W2971348843C2780367215 @default.
- W2971348843 hasConceptScore W2971348843C36574619 @default.
- W2971348843 hasConceptScore W2971348843C39432304 @default.
- W2971348843 hasConceptScore W2971348843C48743137 @default.
- W2971348843 hasConceptScore W2971348843C537208039 @default.
- W2971348843 hasConceptScore W2971348843C548081761 @default.
- W2971348843 hasConceptScore W2971348843C57442070 @default.
- W2971348843 hasConceptScore W2971348843C73593433 @default.