Matches in SemOpenAlex for { <https://semopenalex.org/work/W2971367360> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2971367360 abstract "This thesis focuses on the development and application of efficient mathematicaltools for estimating and modelling the exchange of carbon dioxide (CO2) between the Earth and its atmosphere; here referred to as the global CO2 surface flux.There are two main approaches for estimating the CO2 flux: Processed based(bottom-up) modelling and atmospheric inversion (top-down) modelling. Thefirst part of the thesis focuses on applying and improve methods for estimatingunknown or uncertain parameters in ecosystem models. This can partly be seenas an optimization problem since the task is to find the parameter set which gives a modelled flux output closest to the flux observations with respect to certain model assumptions. Standard gradient-based optimization methods are seldom applicable since the derivatives are commonly unknown and, due to the complex interactions between flux output and model parameters, the system is highly nonlinear and often multimodal.We show that a popular model-based search method, Gradient Adaptive Stochastic Search (GASS), which combines importance sampling with some second-order gradient information, can be used for efficient parameter inference. Furthermore, the importance sampling for this method is improved by forming probabilistic distributions based on good samples from previous iterations in the algorithm.Secondly, the thesis deals with atmospheric inversions, where time series ofCO2 concentrations taken from a global network of measurement stations areused together with an atmospheric transport model, to obtain a reconstruction of the CO2 surface flux. For this application, we introduce a new concept of modelling the surface flux, by using GaussianMarkov Random Fields (GMRF) defined on a continuous spatial domain. In contrast to previous inversion methods, the modelled concentrations are obtained from a highly resolved spatial integration, while keeping a discrete temporal resolution. The smooth representation of the flux reduces aggregation errors present in traditional flux representations restricted to a grid and allows the flux covariance to be estimated on a continuous spatial domain.Modelling the CO2 flux using GMRFs open up for the use of numerical methods for sparse matrices. The last part of the thesis presents methods for improvingthe inference on our GMRF model, by using Markov Chain Monte Carlomethods. We show that using Crank Nicholson based proposals significantly reduces the computational time needed for estimating CO2 flux in atmosphericinverse modelling. (Less)" @default.
- W2971367360 created "2019-09-12" @default.
- W2971367360 creator A5048459128 @default.
- W2971367360 date "2019-08-27" @default.
- W2971367360 modified "2023-09-27" @default.
- W2971367360 title "Satistical Modelling Of CO2 Exchange Between Land And Atmosphere : Using Stochastic Optimisation And Gaussian Markov Random Fields" @default.
- W2971367360 hasPublicationYear "2019" @default.
- W2971367360 type Work @default.
- W2971367360 sameAs 2971367360 @default.
- W2971367360 citedByCount "0" @default.
- W2971367360 crossrefType "dissertation" @default.
- W2971367360 hasAuthorship W2971367360A5048459128 @default.
- W2971367360 hasConcept C106131492 @default.
- W2971367360 hasConcept C11413529 @default.
- W2971367360 hasConcept C119857082 @default.
- W2971367360 hasConcept C121332964 @default.
- W2971367360 hasConcept C126255220 @default.
- W2971367360 hasConcept C140779682 @default.
- W2971367360 hasConcept C154945302 @default.
- W2971367360 hasConcept C163716315 @default.
- W2971367360 hasConcept C191897082 @default.
- W2971367360 hasConcept C192562407 @default.
- W2971367360 hasConcept C31972630 @default.
- W2971367360 hasConcept C33923547 @default.
- W2971367360 hasConcept C41008148 @default.
- W2971367360 hasConcept C49937458 @default.
- W2971367360 hasConcept C62520636 @default.
- W2971367360 hasConcept C68709404 @default.
- W2971367360 hasConcept C98763669 @default.
- W2971367360 hasConceptScore W2971367360C106131492 @default.
- W2971367360 hasConceptScore W2971367360C11413529 @default.
- W2971367360 hasConceptScore W2971367360C119857082 @default.
- W2971367360 hasConceptScore W2971367360C121332964 @default.
- W2971367360 hasConceptScore W2971367360C126255220 @default.
- W2971367360 hasConceptScore W2971367360C140779682 @default.
- W2971367360 hasConceptScore W2971367360C154945302 @default.
- W2971367360 hasConceptScore W2971367360C163716315 @default.
- W2971367360 hasConceptScore W2971367360C191897082 @default.
- W2971367360 hasConceptScore W2971367360C192562407 @default.
- W2971367360 hasConceptScore W2971367360C31972630 @default.
- W2971367360 hasConceptScore W2971367360C33923547 @default.
- W2971367360 hasConceptScore W2971367360C41008148 @default.
- W2971367360 hasConceptScore W2971367360C49937458 @default.
- W2971367360 hasConceptScore W2971367360C62520636 @default.
- W2971367360 hasConceptScore W2971367360C68709404 @default.
- W2971367360 hasConceptScore W2971367360C98763669 @default.
- W2971367360 hasLocation W29713673601 @default.
- W2971367360 hasOpenAccess W2971367360 @default.
- W2971367360 hasPrimaryLocation W29713673601 @default.
- W2971367360 hasRelatedWork W152320923 @default.
- W2971367360 hasRelatedWork W19012118 @default.
- W2971367360 hasRelatedWork W1995542168 @default.
- W2971367360 hasRelatedWork W2000290486 @default.
- W2971367360 hasRelatedWork W2001218624 @default.
- W2971367360 hasRelatedWork W2043814422 @default.
- W2971367360 hasRelatedWork W2069425686 @default.
- W2971367360 hasRelatedWork W2254980362 @default.
- W2971367360 hasRelatedWork W2787256287 @default.
- W2971367360 hasRelatedWork W2963982776 @default.
- W2971367360 hasRelatedWork W2969636961 @default.
- W2971367360 hasRelatedWork W2976403638 @default.
- W2971367360 hasRelatedWork W2991103925 @default.
- W2971367360 hasRelatedWork W3043213878 @default.
- W2971367360 hasRelatedWork W3106072647 @default.
- W2971367360 hasRelatedWork W3119865745 @default.
- W2971367360 hasRelatedWork W3159452981 @default.
- W2971367360 hasRelatedWork W3184880923 @default.
- W2971367360 hasRelatedWork W45683405 @default.
- W2971367360 hasRelatedWork W1969514767 @default.
- W2971367360 isParatext "false" @default.
- W2971367360 isRetracted "false" @default.
- W2971367360 magId "2971367360" @default.
- W2971367360 workType "dissertation" @default.