Matches in SemOpenAlex for { <https://semopenalex.org/work/W2971368946> ?p ?o ?g. }
- W2971368946 endingPage "452" @default.
- W2971368946 startingPage "437" @default.
- W2971368946 abstract "Social media data represent an important resource for behavioral analysis of the aging population. This paper addresses the problem of age prediction from Twitter dataset, where the prediction issue is viewed as a classification task. For this purpose, an innovative model based on Convolutional Neural Network is devised. To this end, we rely on language-related features and social media specific metadata. More specifically, we introduce two features that have not been previously considered in the literature: the content of URLs and hashtags appearing in tweets. We also employ distributed representations of words and phrases present in tweets, hashtags and URLs, pre-trained on appropriate corpora in order to exploit their semantic information in age prediction. We show that our CNN-based classifier, when compared with baseline models, yields an improvement of up to 12.3% for Dutch dataset, 9.8% for English1 dataset, and 6.6% for English2 dataset in the micro-averaged F1 score." @default.
- W2971368946 created "2019-09-12" @default.
- W2971368946 creator A5009047862 @default.
- W2971368946 creator A5051336752 @default.
- W2971368946 creator A5068812101 @default.
- W2971368946 creator A5090726919 @default.
- W2971368946 date "2020-01-01" @default.
- W2971368946 modified "2023-09-30" @default.
- W2971368946 title "On the use of distributed semantics of tweet metadata for user age prediction" @default.
- W2971368946 cites W1664970667 @default.
- W2971368946 cites W1948823840 @default.
- W2971368946 cites W1976948655 @default.
- W2971368946 cites W1979230891 @default.
- W2971368946 cites W1981229576 @default.
- W2971368946 cites W1984010941 @default.
- W2971368946 cites W2014864037 @default.
- W2971368946 cites W2019507850 @default.
- W2971368946 cites W2109151141 @default.
- W2971368946 cites W2119595472 @default.
- W2971368946 cites W2132906957 @default.
- W2971368946 cites W2153803020 @default.
- W2971368946 cites W2159397589 @default.
- W2971368946 cites W2189584792 @default.
- W2971368946 cites W2251812186 @default.
- W2971368946 cites W2289646608 @default.
- W2971368946 cites W2293267779 @default.
- W2971368946 cites W2295404757 @default.
- W2971368946 cites W2295944144 @default.
- W2971368946 cites W2751888965 @default.
- W2971368946 cites W2806427725 @default.
- W2971368946 cites W2963042536 @default.
- W2971368946 doi "https://doi.org/10.1016/j.future.2019.08.018" @default.
- W2971368946 hasPublicationYear "2020" @default.
- W2971368946 type Work @default.
- W2971368946 sameAs 2971368946 @default.
- W2971368946 citedByCount "18" @default.
- W2971368946 countsByYear W29713689462020 @default.
- W2971368946 countsByYear W29713689462021 @default.
- W2971368946 countsByYear W29713689462022 @default.
- W2971368946 countsByYear W29713689462023 @default.
- W2971368946 crossrefType "journal-article" @default.
- W2971368946 hasAuthorship W2971368946A5009047862 @default.
- W2971368946 hasAuthorship W2971368946A5051336752 @default.
- W2971368946 hasAuthorship W2971368946A5068812101 @default.
- W2971368946 hasAuthorship W2971368946A5090726919 @default.
- W2971368946 hasBestOaLocation W29713689461 @default.
- W2971368946 hasConcept C111368507 @default.
- W2971368946 hasConcept C12725497 @default.
- W2971368946 hasConcept C127313418 @default.
- W2971368946 hasConcept C136764020 @default.
- W2971368946 hasConcept C144024400 @default.
- W2971368946 hasConcept C148524875 @default.
- W2971368946 hasConcept C149923435 @default.
- W2971368946 hasConcept C154945302 @default.
- W2971368946 hasConcept C162324750 @default.
- W2971368946 hasConcept C165696696 @default.
- W2971368946 hasConcept C184337299 @default.
- W2971368946 hasConcept C187736073 @default.
- W2971368946 hasConcept C199360897 @default.
- W2971368946 hasConcept C204321447 @default.
- W2971368946 hasConcept C23123220 @default.
- W2971368946 hasConcept C2780451532 @default.
- W2971368946 hasConcept C2908647359 @default.
- W2971368946 hasConcept C38652104 @default.
- W2971368946 hasConcept C41008148 @default.
- W2971368946 hasConcept C518677369 @default.
- W2971368946 hasConcept C81363708 @default.
- W2971368946 hasConcept C93518851 @default.
- W2971368946 hasConcept C95623464 @default.
- W2971368946 hasConceptScore W2971368946C111368507 @default.
- W2971368946 hasConceptScore W2971368946C12725497 @default.
- W2971368946 hasConceptScore W2971368946C127313418 @default.
- W2971368946 hasConceptScore W2971368946C136764020 @default.
- W2971368946 hasConceptScore W2971368946C144024400 @default.
- W2971368946 hasConceptScore W2971368946C148524875 @default.
- W2971368946 hasConceptScore W2971368946C149923435 @default.
- W2971368946 hasConceptScore W2971368946C154945302 @default.
- W2971368946 hasConceptScore W2971368946C162324750 @default.
- W2971368946 hasConceptScore W2971368946C165696696 @default.
- W2971368946 hasConceptScore W2971368946C184337299 @default.
- W2971368946 hasConceptScore W2971368946C187736073 @default.
- W2971368946 hasConceptScore W2971368946C199360897 @default.
- W2971368946 hasConceptScore W2971368946C204321447 @default.
- W2971368946 hasConceptScore W2971368946C23123220 @default.
- W2971368946 hasConceptScore W2971368946C2780451532 @default.
- W2971368946 hasConceptScore W2971368946C2908647359 @default.
- W2971368946 hasConceptScore W2971368946C38652104 @default.
- W2971368946 hasConceptScore W2971368946C41008148 @default.
- W2971368946 hasConceptScore W2971368946C518677369 @default.
- W2971368946 hasConceptScore W2971368946C81363708 @default.
- W2971368946 hasConceptScore W2971368946C93518851 @default.
- W2971368946 hasConceptScore W2971368946C95623464 @default.
- W2971368946 hasFunder F4320320300 @default.
- W2971368946 hasFunder F4320338337 @default.
- W2971368946 hasLocation W29713689461 @default.
- W2971368946 hasLocation W29713689462 @default.
- W2971368946 hasLocation W29713689463 @default.
- W2971368946 hasLocation W29713689464 @default.