Matches in SemOpenAlex for { <https://semopenalex.org/work/W2971370690> ?p ?o ?g. }
- W2971370690 endingPage "116054" @default.
- W2971370690 startingPage "116054" @default.
- W2971370690 abstract "We present the results of a large-scale analysis of event-related responses based on raw EEG data from 17 studies performed at six experimental sites associated with four different institutions. The analysis corpus represents 1,155 recordings containing approximately 7.8 million event instances acquired under several different experimental paradigms. Such large-scale analysis is predicated on consistent data organization and event annotation as well as an effective automated preprocessing pipeline to transform raw EEG into a form suitable for comparative analysis. A key component of this analysis is the annotation of study-specific event codes using a common vocabulary to describe relevant event features. We demonstrate that Hierarchical Event Descriptors (HED tags) capture statistically significant cognitive aspects of EEG events common across multiple recordings, subjects, studies, paradigms, headset configurations, and experimental sites. We use representational similarity analysis (RSA) to show that EEG responses annotated with the same cognitive aspect are significantly more similar than those that do not share that cognitive aspect. These RSA similarity results are supported by visualizations that exploit the non-linear similarities of these associations. We apply temporal overlap regression, reducing confounds caused by adjacent event instances, to extract time and time-frequency EEG features (regressed ERPs and ERSPs) that are comparable across studies and replicate findings from prior, individual studies. Likewise, we use second-level linear regression to separate effects of different cognitive aspects on these features across all studies. This work demonstrates that EEG mega-analysis (pooling of raw data across studies) can enable investigations of brain dynamics in a more generalized fashion than single studies afford. A companion paper complements this event-based analysis by addressing commonality of the time and frequency statistical properties of EEG across studies at the channel and dipole level." @default.
- W2971370690 created "2019-09-12" @default.
- W2971370690 creator A5026042402 @default.
- W2971370690 creator A5027971566 @default.
- W2971370690 creator A5040575323 @default.
- W2971370690 creator A5048095883 @default.
- W2971370690 creator A5069607494 @default.
- W2971370690 creator A5088441293 @default.
- W2971370690 date "2020-02-01" @default.
- W2971370690 modified "2023-10-17" @default.
- W2971370690 title "Automated EEG mega-analysis II: Cognitive aspects of event related features" @default.
- W2971370690 cites W1514687927 @default.
- W2971370690 cites W1525254066 @default.
- W2971370690 cites W1936982107 @default.
- W2971370690 cites W1937389136 @default.
- W2971370690 cites W1967970656 @default.
- W2971370690 cites W1976115811 @default.
- W2971370690 cites W1985261475 @default.
- W2971370690 cites W1986762730 @default.
- W2971370690 cites W1989656911 @default.
- W2971370690 cites W1990381576 @default.
- W2971370690 cites W2020090747 @default.
- W2971370690 cites W2021945797 @default.
- W2971370690 cites W2034614101 @default.
- W2971370690 cites W2049445666 @default.
- W2971370690 cites W2060472216 @default.
- W2971370690 cites W2068117910 @default.
- W2971370690 cites W2079188720 @default.
- W2971370690 cites W2090241707 @default.
- W2971370690 cites W2093299871 @default.
- W2971370690 cites W2102392375 @default.
- W2971370690 cites W2102542124 @default.
- W2971370690 cites W2103501943 @default.
- W2971370690 cites W2107553000 @default.
- W2971370690 cites W2108384452 @default.
- W2971370690 cites W2110229159 @default.
- W2971370690 cites W2113412631 @default.
- W2971370690 cites W2119656999 @default.
- W2971370690 cites W2128495200 @default.
- W2971370690 cites W2131934725 @default.
- W2971370690 cites W2142337462 @default.
- W2971370690 cites W2149917593 @default.
- W2971370690 cites W2162654208 @default.
- W2971370690 cites W2205835757 @default.
- W2971370690 cites W2315796184 @default.
- W2971370690 cites W2530169615 @default.
- W2971370690 cites W2585964843 @default.
- W2971370690 cites W2602768412 @default.
- W2971370690 cites W2626120480 @default.
- W2971370690 cites W2675007102 @default.
- W2971370690 cites W2676810451 @default.
- W2971370690 cites W2786687317 @default.
- W2971370690 cites W2886905122 @default.
- W2971370690 cites W2951103577 @default.
- W2971370690 cites W2963181702 @default.
- W2971370690 cites W770771543 @default.
- W2971370690 doi "https://doi.org/10.1016/j.neuroimage.2019.116054" @default.
- W2971370690 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31491523" @default.
- W2971370690 hasPublicationYear "2020" @default.
- W2971370690 type Work @default.
- W2971370690 sameAs 2971370690 @default.
- W2971370690 citedByCount "18" @default.
- W2971370690 countsByYear W29713706902019 @default.
- W2971370690 countsByYear W29713706902020 @default.
- W2971370690 countsByYear W29713706902021 @default.
- W2971370690 countsByYear W29713706902022 @default.
- W2971370690 countsByYear W29713706902023 @default.
- W2971370690 crossrefType "journal-article" @default.
- W2971370690 hasAuthorship W2971370690A5026042402 @default.
- W2971370690 hasAuthorship W2971370690A5027971566 @default.
- W2971370690 hasAuthorship W2971370690A5040575323 @default.
- W2971370690 hasAuthorship W2971370690A5048095883 @default.
- W2971370690 hasAuthorship W2971370690A5069607494 @default.
- W2971370690 hasAuthorship W2971370690A5088441293 @default.
- W2971370690 hasBestOaLocation W29713706901 @default.
- W2971370690 hasConcept C103278499 @default.
- W2971370690 hasConcept C115961682 @default.
- W2971370690 hasConcept C118552586 @default.
- W2971370690 hasConcept C121332964 @default.
- W2971370690 hasConcept C153180895 @default.
- W2971370690 hasConcept C154945302 @default.
- W2971370690 hasConcept C15744967 @default.
- W2971370690 hasConcept C169760540 @default.
- W2971370690 hasConcept C169900460 @default.
- W2971370690 hasConcept C2779662365 @default.
- W2971370690 hasConcept C41008148 @default.
- W2971370690 hasConcept C522805319 @default.
- W2971370690 hasConcept C62520636 @default.
- W2971370690 hasConceptScore W2971370690C103278499 @default.
- W2971370690 hasConceptScore W2971370690C115961682 @default.
- W2971370690 hasConceptScore W2971370690C118552586 @default.
- W2971370690 hasConceptScore W2971370690C121332964 @default.
- W2971370690 hasConceptScore W2971370690C153180895 @default.
- W2971370690 hasConceptScore W2971370690C154945302 @default.
- W2971370690 hasConceptScore W2971370690C15744967 @default.
- W2971370690 hasConceptScore W2971370690C169760540 @default.
- W2971370690 hasConceptScore W2971370690C169900460 @default.
- W2971370690 hasConceptScore W2971370690C2779662365 @default.