Matches in SemOpenAlex for { <https://semopenalex.org/work/W2971386264> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2971386264 abstract "Ischaemic heart disease is the number one cause of death world wide, which is in close relation with heart failure. If patients suffer from drug-refractory heart failure with a reduced ejection fraction, cardiac resynchronization therapy is a treatment option. For planning the procedure, precise information about the left ventricle’s anatomy and scar distribution is required. The clinical gold standard to visualize scar is late gadolinium enhanced magnetic resonance imaging (LGE-MRI). The challenge arises in the myocardium segmentation of these sequences which is a pre-requisite for an accurate scar quantification. In this work, we compare a filter based approach against a learning based approach for LGE-MRI segmentation. For both approaches the segmentation workflow consists of four major steps. First, the left ventricle is detected. Second, the blood pool is estimated. Third, the endocardium is refined using scar information. Fourth, the epicardium is extracted.The proposed methods were evaluated on 100 clinical LGE-MRI data sets. For the learning based approach a 5-fold nested cross-validation is applied to evaluate the hyper-parameters. The learning based segmentation achieves slightly better results, with a Dice score of 0.82 ± 0.09 for the endocard and 0.81 ± 0.08 for the epicard." @default.
- W2971386264 created "2019-09-12" @default.
- W2971386264 creator A5025681380 @default.
- W2971386264 creator A5029246866 @default.
- W2971386264 creator A5031797939 @default.
- W2971386264 creator A5032499810 @default.
- W2971386264 creator A5056245914 @default.
- W2971386264 creator A5072769131 @default.
- W2971386264 date "2018-11-01" @default.
- W2971386264 modified "2023-09-26" @default.
- W2971386264 title "Left Ventricle Segmentation in LGE-MRI: Filter Based vs. Learning Based" @default.
- W2971386264 cites W1496977142 @default.
- W2971386264 cites W1767244069 @default.
- W2971386264 cites W1893421000 @default.
- W2971386264 cites W1986622667 @default.
- W2971386264 cites W2106078605 @default.
- W2971386264 cites W2136120151 @default.
- W2971386264 cites W2567772772 @default.
- W2971386264 cites W2619905732 @default.
- W2971386264 cites W2723319269 @default.
- W2971386264 cites W3021842026 @default.
- W2971386264 doi "https://doi.org/10.1109/nssmic.2018.8824478" @default.
- W2971386264 hasPublicationYear "2018" @default.
- W2971386264 type Work @default.
- W2971386264 sameAs 2971386264 @default.
- W2971386264 citedByCount "0" @default.
- W2971386264 crossrefType "proceedings-article" @default.
- W2971386264 hasAuthorship W2971386264A5025681380 @default.
- W2971386264 hasAuthorship W2971386264A5029246866 @default.
- W2971386264 hasAuthorship W2971386264A5031797939 @default.
- W2971386264 hasAuthorship W2971386264A5032499810 @default.
- W2971386264 hasAuthorship W2971386264A5056245914 @default.
- W2971386264 hasAuthorship W2971386264A5072769131 @default.
- W2971386264 hasConcept C126322002 @default.
- W2971386264 hasConcept C126838900 @default.
- W2971386264 hasConcept C143409427 @default.
- W2971386264 hasConcept C154945302 @default.
- W2971386264 hasConcept C164705383 @default.
- W2971386264 hasConcept C2778198053 @default.
- W2971386264 hasConcept C2778921608 @default.
- W2971386264 hasConcept C41008148 @default.
- W2971386264 hasConcept C71924100 @default.
- W2971386264 hasConcept C78085059 @default.
- W2971386264 hasConcept C85378888 @default.
- W2971386264 hasConcept C89600930 @default.
- W2971386264 hasConceptScore W2971386264C126322002 @default.
- W2971386264 hasConceptScore W2971386264C126838900 @default.
- W2971386264 hasConceptScore W2971386264C143409427 @default.
- W2971386264 hasConceptScore W2971386264C154945302 @default.
- W2971386264 hasConceptScore W2971386264C164705383 @default.
- W2971386264 hasConceptScore W2971386264C2778198053 @default.
- W2971386264 hasConceptScore W2971386264C2778921608 @default.
- W2971386264 hasConceptScore W2971386264C41008148 @default.
- W2971386264 hasConceptScore W2971386264C71924100 @default.
- W2971386264 hasConceptScore W2971386264C78085059 @default.
- W2971386264 hasConceptScore W2971386264C85378888 @default.
- W2971386264 hasConceptScore W2971386264C89600930 @default.
- W2971386264 hasLocation W29713862641 @default.
- W2971386264 hasOpenAccess W2971386264 @default.
- W2971386264 hasPrimaryLocation W29713862641 @default.
- W2971386264 hasRelatedWork W185626139 @default.
- W2971386264 hasRelatedWork W2357509803 @default.
- W2971386264 hasRelatedWork W2369093992 @default.
- W2971386264 hasRelatedWork W2375703560 @default.
- W2971386264 hasRelatedWork W2390502085 @default.
- W2971386264 hasRelatedWork W2418353436 @default.
- W2971386264 hasRelatedWork W2912421895 @default.
- W2971386264 hasRelatedWork W3003867205 @default.
- W2971386264 hasRelatedWork W3029299973 @default.
- W2971386264 hasRelatedWork W3184396171 @default.
- W2971386264 isParatext "false" @default.
- W2971386264 isRetracted "false" @default.
- W2971386264 magId "2971386264" @default.
- W2971386264 workType "article" @default.