Matches in SemOpenAlex for { <https://semopenalex.org/work/W2971494328> ?p ?o ?g. }
- W2971494328 abstract "Dynamic functional network connectivity (dFNC) analysis is a widely-used to study associations between dynamic functional correlations and cognitive abilities. Traditional methods analyze time-varying association of different spatial networks while assuming that the spatial network itself is stationary. However, there has been very little work focused on voxelwise spatial variability. Exploiting the variability across both the temporal and spatial domains provide a more promising direction to obtain reliable dynamic functional patterns. However, methods for extracting time-varying spatio-temporal patterns from large-scale functional magnetic resonance imaging (fMRI) data present some challenges, such as degradation in performance with respect to increase in size of the data, estimation of the number of dynamic components, and the potential sensitivity of the resulting dFNCs to selection of the networks. In this work, we implement subsequent extraction of exemplars and dynamics using a constrained independent vector analysis, a data-driven method that efficiently estimates spatial and temporal dynamics from large-scale resting-state fMRI data. We explore the benefits of analyzing spatial dFNC (sdFNC) patterns over temporal dFNC (tdFNC) patterns in the context of differentiating healthy controls and patients with schizophrenia. Our results indicate that for resting-state fMRI data, sdFNC patterns were able to better classify patients and controls, and yield more distinguishing features compared with tdFNC patterns. We also estimate structured patterns of connectivity/states using sdFNC patterns, an area that has not been studied so far, and observe that sdFNC was able to successfully capture distinct information from healthy controls and patients with schizophrenia. In addition, sdFNC patterns were also able to identify functional patterns that associate with signs of paranoia and abnormalities in the patients group. We also observe that patients with schizophrenia tend to switch to or stay in a state corresponding to a hyperconnected brain network." @default.
- W2971494328 created "2019-09-12" @default.
- W2971494328 creator A5032850756 @default.
- W2971494328 creator A5060798483 @default.
- W2971494328 creator A5079732715 @default.
- W2971494328 creator A5082337594 @default.
- W2971494328 date "2019-09-24" @default.
- W2971494328 modified "2023-10-16" @default.
- W2971494328 title "Spatial Dynamic Functional Connectivity Analysis Identifies Distinctive Biomarkers in Schizophrenia" @default.
- W2971494328 cites W1487431580 @default.
- W2971494328 cites W1760829075 @default.
- W2971494328 cites W1906883763 @default.
- W2971494328 cites W1932220560 @default.
- W2971494328 cites W1976623182 @default.
- W2971494328 cites W1985327120 @default.
- W2971494328 cites W1986589478 @default.
- W2971494328 cites W1988563570 @default.
- W2971494328 cites W1991840148 @default.
- W2971494328 cites W2001870301 @default.
- W2971494328 cites W2031677665 @default.
- W2971494328 cites W2033166913 @default.
- W2971494328 cites W2037035617 @default.
- W2971494328 cites W2055345898 @default.
- W2971494328 cites W2055637322 @default.
- W2971494328 cites W2069481424 @default.
- W2971494328 cites W2075680690 @default.
- W2971494328 cites W2082207932 @default.
- W2971494328 cites W2111783629 @default.
- W2971494328 cites W2115687188 @default.
- W2971494328 cites W2142566135 @default.
- W2971494328 cites W2148538805 @default.
- W2971494328 cites W2150023439 @default.
- W2971494328 cites W2155898410 @default.
- W2971494328 cites W2157106546 @default.
- W2971494328 cites W2163111503 @default.
- W2971494328 cites W2167265771 @default.
- W2971494328 cites W2170702893 @default.
- W2971494328 cites W2563279629 @default.
- W2971494328 cites W2604068292 @default.
- W2971494328 cites W2747936636 @default.
- W2971494328 cites W2749978186 @default.
- W2971494328 cites W2752188008 @default.
- W2971494328 cites W2801360208 @default.
- W2971494328 cites W2806246218 @default.
- W2971494328 cites W2893298789 @default.
- W2971494328 cites W2898151345 @default.
- W2971494328 cites W2913406796 @default.
- W2971494328 cites W2963650207 @default.
- W2971494328 cites W2981673693 @default.
- W2971494328 doi "https://doi.org/10.3389/fnins.2019.01006" @default.
- W2971494328 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6769044" @default.
- W2971494328 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31607848" @default.
- W2971494328 hasPublicationYear "2019" @default.
- W2971494328 type Work @default.
- W2971494328 sameAs 2971494328 @default.
- W2971494328 citedByCount "24" @default.
- W2971494328 countsByYear W29714943282020 @default.
- W2971494328 countsByYear W29714943282021 @default.
- W2971494328 countsByYear W29714943282022 @default.
- W2971494328 countsByYear W29714943282023 @default.
- W2971494328 crossrefType "journal-article" @default.
- W2971494328 hasAuthorship W2971494328A5032850756 @default.
- W2971494328 hasAuthorship W2971494328A5060798483 @default.
- W2971494328 hasAuthorship W2971494328A5079732715 @default.
- W2971494328 hasAuthorship W2971494328A5082337594 @default.
- W2971494328 hasBestOaLocation W29714943281 @default.
- W2971494328 hasConcept C105795698 @default.
- W2971494328 hasConcept C119857082 @default.
- W2971494328 hasConcept C124101348 @default.
- W2971494328 hasConcept C153180895 @default.
- W2971494328 hasConcept C154945302 @default.
- W2971494328 hasConcept C15744967 @default.
- W2971494328 hasConcept C158709400 @default.
- W2971494328 hasConcept C159620131 @default.
- W2971494328 hasConcept C166957645 @default.
- W2971494328 hasConcept C169760540 @default.
- W2971494328 hasConcept C18903297 @default.
- W2971494328 hasConcept C199360897 @default.
- W2971494328 hasConcept C205649164 @default.
- W2971494328 hasConcept C2776412080 @default.
- W2971494328 hasConcept C2779226451 @default.
- W2971494328 hasConcept C2779343474 @default.
- W2971494328 hasConcept C2781312939 @default.
- W2971494328 hasConcept C33923547 @default.
- W2971494328 hasConcept C41008148 @default.
- W2971494328 hasConcept C51432778 @default.
- W2971494328 hasConcept C66324658 @default.
- W2971494328 hasConcept C86803240 @default.
- W2971494328 hasConceptScore W2971494328C105795698 @default.
- W2971494328 hasConceptScore W2971494328C119857082 @default.
- W2971494328 hasConceptScore W2971494328C124101348 @default.
- W2971494328 hasConceptScore W2971494328C153180895 @default.
- W2971494328 hasConceptScore W2971494328C154945302 @default.
- W2971494328 hasConceptScore W2971494328C15744967 @default.
- W2971494328 hasConceptScore W2971494328C158709400 @default.
- W2971494328 hasConceptScore W2971494328C159620131 @default.
- W2971494328 hasConceptScore W2971494328C166957645 @default.
- W2971494328 hasConceptScore W2971494328C169760540 @default.
- W2971494328 hasConceptScore W2971494328C18903297 @default.
- W2971494328 hasConceptScore W2971494328C199360897 @default.