Matches in SemOpenAlex for { <https://semopenalex.org/work/W2971521251> ?p ?o ?g. }
- W2971521251 endingPage "3670" @default.
- W2971521251 startingPage "3670" @default.
- W2971521251 abstract "Much work has been carried out for modeling the output power of photovoltaic panels. Using artificial neural networks (ANNS), one could efficiently model the output power of heterogeneous photovoltaic (HPV) panels. However, due to the existing different types of artificial neural network implementations, it has become hard to choose the best approach to use for a specific application. This raises the need for studies that develop models using the different neural networks types and compare the efficiency of these different types for that specific application. In this work, two neural network types, namely, the nonlinear autoregressive network with exogenous inputs (NARX) and the deep feed-forward (DFF) neural network, have been developed and compared for modeling the maximum output power of HPV panels. Both neural networks have four exogenous inputs and two outputs. Matlab/Simulink is used in evaluating the proposed two models under a variety of atmospheric conditions. A comprehensive evaluation, including a Diebold-Mariano (DM) test, is applied to verify the ability of the proposed networks. Moreover, the work further investigates the two developed neural networks using their actual implementation on a low-cost microcontroller. Both neural networks have performed very well; however, the NARX model performance is much better compared with DFF. Using the NARX network, a prediction of PV output power could be obtained, with half the execution time required to obtain the same prediction with the DFF neural network, and with accuracy of ±0.18 W." @default.
- W2971521251 created "2019-09-12" @default.
- W2971521251 creator A5010795324 @default.
- W2971521251 creator A5091376101 @default.
- W2971521251 date "2019-09-04" @default.
- W2971521251 modified "2023-09-26" @default.
- W2971521251 title "Toward Better PV Panel’s Output Power Prediction; a Module Based on Nonlinear Autoregressive Neural Network with Exogenous Inputs" @default.
- W2971521251 cites W1977587074 @default.
- W2971521251 cites W1983494316 @default.
- W2971521251 cites W1987302169 @default.
- W2971521251 cites W2012797331 @default.
- W2971521251 cites W2016470701 @default.
- W2971521251 cites W2018254816 @default.
- W2971521251 cites W2024032348 @default.
- W2971521251 cites W2028903792 @default.
- W2971521251 cites W2041716774 @default.
- W2971521251 cites W2042131079 @default.
- W2971521251 cites W2055100498 @default.
- W2971521251 cites W2056114557 @default.
- W2971521251 cites W2068773846 @default.
- W2971521251 cites W2069304223 @default.
- W2971521251 cites W2070826863 @default.
- W2971521251 cites W2074457964 @default.
- W2971521251 cites W2084691488 @default.
- W2971521251 cites W2129270932 @default.
- W2971521251 cites W2151479853 @default.
- W2971521251 cites W2156302255 @default.
- W2971521251 cites W2159961704 @default.
- W2971521251 cites W2175143722 @default.
- W2971521251 cites W2191691072 @default.
- W2971521251 cites W2201221078 @default.
- W2971521251 cites W2251599489 @default.
- W2971521251 cites W2275543810 @default.
- W2971521251 cites W2315598830 @default.
- W2971521251 cites W2511753245 @default.
- W2971521251 cites W2751698537 @default.
- W2971521251 cites W2753631482 @default.
- W2971521251 cites W2778081019 @default.
- W2971521251 cites W2791416295 @default.
- W2971521251 cites W2791494608 @default.
- W2971521251 cites W2791646042 @default.
- W2971521251 cites W2901312569 @default.
- W2971521251 cites W2903061848 @default.
- W2971521251 cites W2911892655 @default.
- W2971521251 cites W2936800959 @default.
- W2971521251 cites W2941069482 @default.
- W2971521251 cites W2945531072 @default.
- W2971521251 cites W2958666723 @default.
- W2971521251 doi "https://doi.org/10.3390/app9183670" @default.
- W2971521251 hasPublicationYear "2019" @default.
- W2971521251 type Work @default.
- W2971521251 sameAs 2971521251 @default.
- W2971521251 citedByCount "4" @default.
- W2971521251 countsByYear W29715212512020 @default.
- W2971521251 countsByYear W29715212512021 @default.
- W2971521251 countsByYear W29715212512022 @default.
- W2971521251 crossrefType "journal-article" @default.
- W2971521251 hasAuthorship W2971521251A5010795324 @default.
- W2971521251 hasAuthorship W2971521251A5091376101 @default.
- W2971521251 hasBestOaLocation W29715212511 @default.
- W2971521251 hasConcept C111919701 @default.
- W2971521251 hasConcept C119599485 @default.
- W2971521251 hasConcept C119857082 @default.
- W2971521251 hasConcept C121332964 @default.
- W2971521251 hasConcept C127413603 @default.
- W2971521251 hasConcept C149782125 @default.
- W2971521251 hasConcept C154945302 @default.
- W2971521251 hasConcept C158622935 @default.
- W2971521251 hasConcept C159877910 @default.
- W2971521251 hasConcept C163258240 @default.
- W2971521251 hasConcept C2780365114 @default.
- W2971521251 hasConcept C33923547 @default.
- W2971521251 hasConcept C41008148 @default.
- W2971521251 hasConcept C41291067 @default.
- W2971521251 hasConcept C42536954 @default.
- W2971521251 hasConcept C50644808 @default.
- W2971521251 hasConcept C62520636 @default.
- W2971521251 hasConceptScore W2971521251C111919701 @default.
- W2971521251 hasConceptScore W2971521251C119599485 @default.
- W2971521251 hasConceptScore W2971521251C119857082 @default.
- W2971521251 hasConceptScore W2971521251C121332964 @default.
- W2971521251 hasConceptScore W2971521251C127413603 @default.
- W2971521251 hasConceptScore W2971521251C149782125 @default.
- W2971521251 hasConceptScore W2971521251C154945302 @default.
- W2971521251 hasConceptScore W2971521251C158622935 @default.
- W2971521251 hasConceptScore W2971521251C159877910 @default.
- W2971521251 hasConceptScore W2971521251C163258240 @default.
- W2971521251 hasConceptScore W2971521251C2780365114 @default.
- W2971521251 hasConceptScore W2971521251C33923547 @default.
- W2971521251 hasConceptScore W2971521251C41008148 @default.
- W2971521251 hasConceptScore W2971521251C41291067 @default.
- W2971521251 hasConceptScore W2971521251C42536954 @default.
- W2971521251 hasConceptScore W2971521251C50644808 @default.
- W2971521251 hasConceptScore W2971521251C62520636 @default.
- W2971521251 hasIssue "18" @default.
- W2971521251 hasLocation W29715212511 @default.
- W2971521251 hasLocation W29715212512 @default.
- W2971521251 hasOpenAccess W2971521251 @default.