Matches in SemOpenAlex for { <https://semopenalex.org/work/W2971567992> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2971567992 endingPage "105020" @default.
- W2971567992 startingPage "105020" @default.
- W2971567992 abstract "Interaction data in recommender systems are usually represented by a bipartite user–item graph whose edges represent interaction behavior between users and items. The data sparsity problem, which is common in recommender systems, is the result of insufficient interaction data in the link prediction on graphs. The data sparsity problem can be alleviated by extracting more interaction behavior from the bipartite graph, however, stacking multiple layers will lead to over-smoothing, in which case, all nodes will converge to the same value. To address this issue, we propose a deeper graph neural network in this paper that can predict links on a bipartite user–item graph using information propagation. An attention mechanism is introduced to our method to address the problem that variable size inputs for each node on a bipartite graph. Our experimental results demonstrate that our proposed method outperforms five baselines, suggesting that the interactions extracted help to alleviate the data sparsity problem and improve recommendation accuracy." @default.
- W2971567992 created "2019-09-12" @default.
- W2971567992 creator A5015941300 @default.
- W2971567992 creator A5037108851 @default.
- W2971567992 creator A5062192039 @default.
- W2971567992 creator A5086582441 @default.
- W2971567992 date "2019-12-01" @default.
- W2971567992 modified "2023-10-16" @default.
- W2971567992 title "A deeper graph neural network for recommender systems" @default.
- W2971567992 cites W2008886893 @default.
- W2971567992 cites W2025605741 @default.
- W2971567992 cites W2030808931 @default.
- W2971567992 cites W2054141820 @default.
- W2971567992 cites W2077902965 @default.
- W2971567992 cites W2116341502 @default.
- W2971567992 cites W2398365891 @default.
- W2971567992 cites W2519400179 @default.
- W2971567992 cites W2558748708 @default.
- W2971567992 cites W2762460055 @default.
- W2971567992 doi "https://doi.org/10.1016/j.knosys.2019.105020" @default.
- W2971567992 hasPublicationYear "2019" @default.
- W2971567992 type Work @default.
- W2971567992 sameAs 2971567992 @default.
- W2971567992 citedByCount "77" @default.
- W2971567992 countsByYear W29715679922020 @default.
- W2971567992 countsByYear W29715679922021 @default.
- W2971567992 countsByYear W29715679922022 @default.
- W2971567992 countsByYear W29715679922023 @default.
- W2971567992 crossrefType "journal-article" @default.
- W2971567992 hasAuthorship W2971567992A5015941300 @default.
- W2971567992 hasAuthorship W2971567992A5037108851 @default.
- W2971567992 hasAuthorship W2971567992A5062192039 @default.
- W2971567992 hasAuthorship W2971567992A5086582441 @default.
- W2971567992 hasConcept C119857082 @default.
- W2971567992 hasConcept C124101348 @default.
- W2971567992 hasConcept C132525143 @default.
- W2971567992 hasConcept C154945302 @default.
- W2971567992 hasConcept C197657726 @default.
- W2971567992 hasConcept C41008148 @default.
- W2971567992 hasConcept C557471498 @default.
- W2971567992 hasConcept C80444323 @default.
- W2971567992 hasConceptScore W2971567992C119857082 @default.
- W2971567992 hasConceptScore W2971567992C124101348 @default.
- W2971567992 hasConceptScore W2971567992C132525143 @default.
- W2971567992 hasConceptScore W2971567992C154945302 @default.
- W2971567992 hasConceptScore W2971567992C197657726 @default.
- W2971567992 hasConceptScore W2971567992C41008148 @default.
- W2971567992 hasConceptScore W2971567992C557471498 @default.
- W2971567992 hasConceptScore W2971567992C80444323 @default.
- W2971567992 hasFunder F4320322919 @default.
- W2971567992 hasFunder F4320334704 @default.
- W2971567992 hasFunder F4320335777 @default.
- W2971567992 hasLocation W29715679921 @default.
- W2971567992 hasOpenAccess W2971567992 @default.
- W2971567992 hasPrimaryLocation W29715679921 @default.
- W2971567992 hasRelatedWork W2077383796 @default.
- W2971567992 hasRelatedWork W2150182025 @default.
- W2971567992 hasRelatedWork W2371352078 @default.
- W2971567992 hasRelatedWork W2953461625 @default.
- W2971567992 hasRelatedWork W3088754131 @default.
- W2971567992 hasRelatedWork W3092950680 @default.
- W2971567992 hasRelatedWork W3197542405 @default.
- W2971567992 hasRelatedWork W4246980185 @default.
- W2971567992 hasRelatedWork W4317039510 @default.
- W2971567992 hasRelatedWork W4386781444 @default.
- W2971567992 hasVolume "185" @default.
- W2971567992 isParatext "false" @default.
- W2971567992 isRetracted "false" @default.
- W2971567992 magId "2971567992" @default.
- W2971567992 workType "article" @default.