Matches in SemOpenAlex for { <https://semopenalex.org/work/W2971569172> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2971569172 endingPage "250" @default.
- W2971569172 startingPage "241" @default.
- W2971569172 abstract "Abstract The analysis of large amounts of personal data with artificial neural networks for deep learning is the driving technology behind new artificial intelligence (AI) systems for all areas in science and technology. These AI methods have evolved from applications in computer vision, the automated analysis of images, and now include frameworks and methods for analyzing multimodal datasets that combine data from many different source, including biomedical devices, smartphones and common user behavior in cyberspace. For neuroscience, these widening streams of personal data and machine learning methods provide many opportunities for basic data-driven research as well as for developing new tools for diagnostic, predictive and therapeutic applications for disorders of the nervous system. The increasing automation and autonomy of AI systems, however, also creates substantial ethical challenges for basic research and medical applications. Here, scientific and medical opportunities as well ethical challenges are summarized and discussed." @default.
- W2971569172 created "2019-09-12" @default.
- W2971569172 creator A5017891550 @default.
- W2971569172 date "2019-11-26" @default.
- W2971569172 modified "2023-09-30" @default.
- W2971569172 title "Artificial Intelligence in Basic and Clinical Neuroscience: Opportunities and Ethical Challenges" @default.
- W2971569172 cites W158727920 @default.
- W2971569172 cites W1999541100 @default.
- W2971569172 cites W2018821139 @default.
- W2971569172 cites W2027328164 @default.
- W2971569172 cites W2147558794 @default.
- W2971569172 cites W2284198383 @default.
- W2971569172 cites W2292862470 @default.
- W2971569172 cites W2310992461 @default.
- W2971569172 cites W2401520370 @default.
- W2971569172 cites W2405607598 @default.
- W2971569172 cites W2500382405 @default.
- W2971569172 cites W2528491735 @default.
- W2971569172 cites W2556758327 @default.
- W2971569172 cites W2557671501 @default.
- W2971569172 cites W2604941166 @default.
- W2971569172 cites W2703592991 @default.
- W2971569172 cites W2735587846 @default.
- W2971569172 cites W2739271801 @default.
- W2971569172 cites W2741907166 @default.
- W2971569172 cites W2803232128 @default.
- W2971569172 cites W2806591294 @default.
- W2971569172 cites W2809628680 @default.
- W2971569172 cites W2827663760 @default.
- W2971569172 cites W2890869158 @default.
- W2971569172 cites W2897055438 @default.
- W2971569172 cites W2908201961 @default.
- W2971569172 cites W2944414373 @default.
- W2971569172 cites W3094202663 @default.
- W2971569172 cites W3100751385 @default.
- W2971569172 doi "https://doi.org/10.1515/nf-2019-0018" @default.
- W2971569172 hasPublicationYear "2019" @default.
- W2971569172 type Work @default.
- W2971569172 sameAs 2971569172 @default.
- W2971569172 citedByCount "15" @default.
- W2971569172 countsByYear W29715691722020 @default.
- W2971569172 countsByYear W29715691722021 @default.
- W2971569172 countsByYear W29715691722022 @default.
- W2971569172 countsByYear W29715691722023 @default.
- W2971569172 crossrefType "journal-article" @default.
- W2971569172 hasAuthorship W2971569172A5017891550 @default.
- W2971569172 hasConcept C107457646 @default.
- W2971569172 hasConcept C110875604 @default.
- W2971569172 hasConcept C136764020 @default.
- W2971569172 hasConcept C154945302 @default.
- W2971569172 hasConcept C15744967 @default.
- W2971569172 hasConcept C17744445 @default.
- W2971569172 hasConcept C188147891 @default.
- W2971569172 hasConcept C199539241 @default.
- W2971569172 hasConcept C205427263 @default.
- W2971569172 hasConcept C2522767166 @default.
- W2971569172 hasConcept C2781241145 @default.
- W2971569172 hasConcept C41008148 @default.
- W2971569172 hasConcept C65414064 @default.
- W2971569172 hasConceptScore W2971569172C107457646 @default.
- W2971569172 hasConceptScore W2971569172C110875604 @default.
- W2971569172 hasConceptScore W2971569172C136764020 @default.
- W2971569172 hasConceptScore W2971569172C154945302 @default.
- W2971569172 hasConceptScore W2971569172C15744967 @default.
- W2971569172 hasConceptScore W2971569172C17744445 @default.
- W2971569172 hasConceptScore W2971569172C188147891 @default.
- W2971569172 hasConceptScore W2971569172C199539241 @default.
- W2971569172 hasConceptScore W2971569172C205427263 @default.
- W2971569172 hasConceptScore W2971569172C2522767166 @default.
- W2971569172 hasConceptScore W2971569172C2781241145 @default.
- W2971569172 hasConceptScore W2971569172C41008148 @default.
- W2971569172 hasConceptScore W2971569172C65414064 @default.
- W2971569172 hasIssue "4" @default.
- W2971569172 hasLocation W29715691721 @default.
- W2971569172 hasOpenAccess W2971569172 @default.
- W2971569172 hasPrimaryLocation W29715691721 @default.
- W2971569172 hasRelatedWork W131487729 @default.
- W2971569172 hasRelatedWork W1523774029 @default.
- W2971569172 hasRelatedWork W2045456578 @default.
- W2971569172 hasRelatedWork W2157609854 @default.
- W2971569172 hasRelatedWork W2522950436 @default.
- W2971569172 hasRelatedWork W3034821702 @default.
- W2971569172 hasRelatedWork W3107474891 @default.
- W2971569172 hasRelatedWork W3123451859 @default.
- W2971569172 hasRelatedWork W4307676075 @default.
- W2971569172 hasRelatedWork W584033417 @default.
- W2971569172 hasVolume "25" @default.
- W2971569172 isParatext "false" @default.
- W2971569172 isRetracted "false" @default.
- W2971569172 magId "2971569172" @default.
- W2971569172 workType "article" @default.