Matches in SemOpenAlex for { <https://semopenalex.org/work/W2971715690> ?p ?o ?g. }
- W2971715690 abstract "Fine-tuning a deep network trained with the standard cross-entropy loss is a strong baseline for few-shot learning. When fine-tuned transductively, this outperforms the current state-of-the-art on standard datasets such as Mini-ImageNet, Tiered-ImageNet, CIFAR-FS and FC-100 with the same hyper-parameters. The simplicity of this approach enables us to demonstrate the first few-shot learning results on the ImageNet-21k dataset. We find that using a large number of meta-training classes results in high few-shot accuracies even for a large number of few-shot classes. We do not advocate our approach as the solution for few-shot learning, but simply use the results to highlight limitations of current benchmarks and few-shot protocols. We perform extensive studies on benchmark datasets to propose a metric that quantifies the hardness of a few-shot episode. This metric can be used to report the performance of few-shot algorithms in a more systematic way." @default.
- W2971715690 created "2019-09-12" @default.
- W2971715690 creator A5006038667 @default.
- W2971715690 creator A5010126054 @default.
- W2971715690 creator A5023396423 @default.
- W2971715690 creator A5038328783 @default.
- W2971715690 date "2019-09-06" @default.
- W2971715690 modified "2023-09-27" @default.
- W2971715690 title "A Baseline for Few-Shot Image Classification" @default.
- W2971715690 cites W1522301498 @default.
- W2971715690 cites W1598377843 @default.
- W2971715690 cites W1600175013 @default.
- W2971715690 cites W1916279783 @default.
- W2971715690 cites W1997460147 @default.
- W2971715690 cites W2107008379 @default.
- W2971715690 cites W2108598243 @default.
- W2971715690 cites W2126204609 @default.
- W2971715690 cites W2137825550 @default.
- W2971715690 cites W2145494108 @default.
- W2971715690 cites W2154455818 @default.
- W2971715690 cites W2156909104 @default.
- W2971715690 cites W2183341477 @default.
- W2971715690 cites W2187089797 @default.
- W2971715690 cites W2194775991 @default.
- W2971715690 cites W2302255633 @default.
- W2971715690 cites W2518108298 @default.
- W2971715690 cites W2519887557 @default.
- W2971715690 cites W2601450892 @default.
- W2971715690 cites W2604763608 @default.
- W2971715690 cites W2605102252 @default.
- W2971715690 cites W2625674597 @default.
- W2971715690 cites W2753160622 @default.
- W2971715690 cites W2765407302 @default.
- W2971715690 cites W2770468159 @default.
- W2971715690 cites W2787035179 @default.
- W2971715690 cites W2796346823 @default.
- W2971715690 cites W2798836702 @default.
- W2971715690 cites W2803570443 @default.
- W2971715690 cites W2803895400 @default.
- W2971715690 cites W2884901161 @default.
- W2971715690 cites W2895671740 @default.
- W2971715690 cites W2902332991 @default.
- W2971715690 cites W2906656621 @default.
- W2971715690 cites W2911906319 @default.
- W2971715690 cites W2934413201 @default.
- W2971715690 cites W2949117887 @default.
- W2971715690 cites W2953102540 @default.
- W2971715690 cites W2962723986 @default.
- W2971715690 cites W2963170156 @default.
- W2971715690 cites W2963233958 @default.
- W2971715690 cites W2963341924 @default.
- W2971715690 cites W2963435192 @default.
- W2971715690 cites W2964054038 @default.
- W2971715690 cites W2982049331 @default.
- W2971715690 cites W2995253937 @default.
- W2971715690 cites W3118608800 @default.
- W2971715690 cites W769612788 @default.
- W2971715690 hasPublicationYear "2019" @default.
- W2971715690 type Work @default.
- W2971715690 sameAs 2971715690 @default.
- W2971715690 citedByCount "5" @default.
- W2971715690 countsByYear W29717156902019 @default.
- W2971715690 countsByYear W29717156902020 @default.
- W2971715690 countsByYear W29717156902021 @default.
- W2971715690 crossrefType "posted-content" @default.
- W2971715690 hasAuthorship W2971715690A5006038667 @default.
- W2971715690 hasAuthorship W2971715690A5010126054 @default.
- W2971715690 hasAuthorship W2971715690A5023396423 @default.
- W2971715690 hasAuthorship W2971715690A5038328783 @default.
- W2971715690 hasConcept C111368507 @default.
- W2971715690 hasConcept C115961682 @default.
- W2971715690 hasConcept C119857082 @default.
- W2971715690 hasConcept C120665830 @default.
- W2971715690 hasConcept C121332964 @default.
- W2971715690 hasConcept C12725497 @default.
- W2971715690 hasConcept C127313418 @default.
- W2971715690 hasConcept C127413603 @default.
- W2971715690 hasConcept C13280743 @default.
- W2971715690 hasConcept C153180895 @default.
- W2971715690 hasConcept C154945302 @default.
- W2971715690 hasConcept C176217482 @default.
- W2971715690 hasConcept C178790620 @default.
- W2971715690 hasConcept C185592680 @default.
- W2971715690 hasConcept C185798385 @default.
- W2971715690 hasConcept C205649164 @default.
- W2971715690 hasConcept C21547014 @default.
- W2971715690 hasConcept C2776372474 @default.
- W2971715690 hasConcept C2778344882 @default.
- W2971715690 hasConcept C2992734406 @default.
- W2971715690 hasConcept C3019835501 @default.
- W2971715690 hasConcept C41008148 @default.
- W2971715690 hasConcept C62520636 @default.
- W2971715690 hasConcept C78519656 @default.
- W2971715690 hasConceptScore W2971715690C111368507 @default.
- W2971715690 hasConceptScore W2971715690C115961682 @default.
- W2971715690 hasConceptScore W2971715690C119857082 @default.
- W2971715690 hasConceptScore W2971715690C120665830 @default.
- W2971715690 hasConceptScore W2971715690C121332964 @default.
- W2971715690 hasConceptScore W2971715690C12725497 @default.
- W2971715690 hasConceptScore W2971715690C127313418 @default.