Matches in SemOpenAlex for { <https://semopenalex.org/work/W2971736579> ?p ?o ?g. }
- W2971736579 abstract "Identifying the connected components of a graph, apart from being a fundamental problem with countless applications, is a key primitive for many other algorithms. In this paper, we consider this problem in parallel settings. Particularly, we focus on the Massively Parallel Computations (MPC) model, which is the standard theoretical model for modern parallel frameworks such as MapReduce, Hadoop, or Spark. We consider the truly sublinear regime of MPC for graph problems where the space per machine is n^δ for some desirably small constant δ ∊ (0, 1). We present an algorithm that for graphs with diameter D in the wide range [log^e n, n], takes O(log D) rounds to identify the connected components and takes O(log log n) rounds for all other graphs. The algorithm is randomized, succeeds with high probability, does not require prior knowledge of D, and uses an optimal total space of O(m). We complement this by showing a conditional lower-bound based on the widely believed TwoCycle conjecture that Ω(log D) rounds are indeed necessary in this setting. Studying parallel connectivity algorithms received a resurgence of interest after the pioneering work of Andoni etal [FOCS 2018] who presented an algorithm with O(log D log log n) round-complexity. Our algorithm improves this result for the whole range of values of D and almost settles the problem due to the conditional lower-bound. Additionally, we show that with minimal adjustments, our algorithm can also be implemented in a variant of (CRCW) PRAM in asymptotically the same number of rounds." @default.
- W2971736579 created "2019-09-12" @default.
- W2971736579 creator A5025934584 @default.
- W2971736579 creator A5044510135 @default.
- W2971736579 creator A5047480720 @default.
- W2971736579 creator A5065818820 @default.
- W2971736579 creator A5075598023 @default.
- W2971736579 date "2019-11-01" @default.
- W2971736579 modified "2023-09-23" @default.
- W2971736579 title "Near-Optimal Massively Parallel Graph Connectivity" @default.
- W2971736579 cites W176067329 @default.
- W2971736579 cites W1974807151 @default.
- W2971736579 cites W1994598067 @default.
- W2971736579 cites W2004350101 @default.
- W2971736579 cites W2008199814 @default.
- W2971736579 cites W2013081353 @default.
- W2971736579 cites W2019998590 @default.
- W2971736579 cites W2044124066 @default.
- W2971736579 cites W2053061798 @default.
- W2971736579 cites W2057082426 @default.
- W2971736579 cites W2061118827 @default.
- W2971736579 cites W2077862183 @default.
- W2971736579 cites W2094900885 @default.
- W2971736579 cites W2100225700 @default.
- W2971736579 cites W2107600509 @default.
- W2971736579 cites W2125182537 @default.
- W2971736579 cites W2152993997 @default.
- W2971736579 cites W2153977620 @default.
- W2971736579 cites W2165753192 @default.
- W2971736579 cites W2173213060 @default.
- W2971736579 cites W2436525433 @default.
- W2971736579 cites W2464065967 @default.
- W2971736579 cites W2505011268 @default.
- W2971736579 cites W2626928698 @default.
- W2971736579 cites W2734687249 @default.
- W2971736579 cites W2737112087 @default.
- W2971736579 cites W2765269579 @default.
- W2971736579 cites W2783930193 @default.
- W2971736579 cites W2788015272 @default.
- W2971736579 cites W2963813153 @default.
- W2971736579 cites W2964082996 @default.
- W2971736579 cites W2964294252 @default.
- W2971736579 cites W4213146104 @default.
- W2971736579 cites W4214651228 @default.
- W2971736579 cites W4230889046 @default.
- W2971736579 cites W4255889623 @default.
- W2971736579 doi "https://doi.org/10.1109/focs.2019.00095" @default.
- W2971736579 hasPublicationYear "2019" @default.
- W2971736579 type Work @default.
- W2971736579 sameAs 2971736579 @default.
- W2971736579 citedByCount "24" @default.
- W2971736579 countsByYear W29717365792018 @default.
- W2971736579 countsByYear W29717365792019 @default.
- W2971736579 countsByYear W29717365792020 @default.
- W2971736579 countsByYear W29717365792021 @default.
- W2971736579 countsByYear W29717365792022 @default.
- W2971736579 countsByYear W29717365792023 @default.
- W2971736579 crossrefType "proceedings-article" @default.
- W2971736579 hasAuthorship W2971736579A5025934584 @default.
- W2971736579 hasAuthorship W2971736579A5044510135 @default.
- W2971736579 hasAuthorship W2971736579A5047480720 @default.
- W2971736579 hasAuthorship W2971736579A5065818820 @default.
- W2971736579 hasAuthorship W2971736579A5075598023 @default.
- W2971736579 hasBestOaLocation W29717365792 @default.
- W2971736579 hasConcept C104317684 @default.
- W2971736579 hasConcept C112313634 @default.
- W2971736579 hasConcept C11413529 @default.
- W2971736579 hasConcept C114614502 @default.
- W2971736579 hasConcept C117160843 @default.
- W2971736579 hasConcept C118615104 @default.
- W2971736579 hasConcept C120373497 @default.
- W2971736579 hasConcept C127716648 @default.
- W2971736579 hasConcept C134306372 @default.
- W2971736579 hasConcept C173608175 @default.
- W2971736579 hasConcept C181789720 @default.
- W2971736579 hasConcept C185592680 @default.
- W2971736579 hasConcept C188082640 @default.
- W2971736579 hasConcept C190475519 @default.
- W2971736579 hasConcept C193435613 @default.
- W2971736579 hasConcept C195292467 @default.
- W2971736579 hasConcept C2780990831 @default.
- W2971736579 hasConcept C33923547 @default.
- W2971736579 hasConcept C41008148 @default.
- W2971736579 hasConcept C55493867 @default.
- W2971736579 hasConcept C63553672 @default.
- W2971736579 hasConcept C77553402 @default.
- W2971736579 hasConceptScore W2971736579C104317684 @default.
- W2971736579 hasConceptScore W2971736579C112313634 @default.
- W2971736579 hasConceptScore W2971736579C11413529 @default.
- W2971736579 hasConceptScore W2971736579C114614502 @default.
- W2971736579 hasConceptScore W2971736579C117160843 @default.
- W2971736579 hasConceptScore W2971736579C118615104 @default.
- W2971736579 hasConceptScore W2971736579C120373497 @default.
- W2971736579 hasConceptScore W2971736579C127716648 @default.
- W2971736579 hasConceptScore W2971736579C134306372 @default.
- W2971736579 hasConceptScore W2971736579C173608175 @default.
- W2971736579 hasConceptScore W2971736579C181789720 @default.
- W2971736579 hasConceptScore W2971736579C185592680 @default.
- W2971736579 hasConceptScore W2971736579C188082640 @default.
- W2971736579 hasConceptScore W2971736579C190475519 @default.