Matches in SemOpenAlex for { <https://semopenalex.org/work/W2971775144> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W2971775144 endingPage "18" @default.
- W2971775144 startingPage "1" @default.
- W2971775144 abstract "Aim: To propose an updated algorithm with an extra step added to the Newton-type algorithm used in robust rank based non-parametric regression for minimizing the dispersion function associated with Wilcoxon scores in order to account for the effect of covariates.
 Methodology: The proposed accelerated failure time approach is aimed at incorporating right random censoring in survival data sets for low to moderate levels of censoring. The existing Newton algorithm is modified to account for the effect of one or more covariates. This is done by first applying Mantel scores to residuals obtained from a regression model, and second by minimizing the dispersion function of these scored residuals. Diagnostic check of the model fit is performed by observing the distribution of the residuals and suitable Bent scores are considered in the case of skewed residuals. To demonstrate the efficacy of this method, a simulation study is conducted to compare the power of this method under three different scenarios: non-proportional hazard, proportional and constant hazard, and proportional but non-constant hazard.
 Results: In most situations, this method yielded reasonable estimates of power for detecting an association of the covariate with the response as compared to popular parametric and semi-parametric approaches. The estimates of the regression coefficient obtained from this method were evaluated and were found to have low bias, low mean square error, and adequate coverage. In a real-life example pertaining to pancreatic cancer study, the proposed method performed admirably well and provided a more realistic interpretation about the effect of covariates (age and Karnofsky score) compared to a standard parametric (lognormal) model.
 Conclusion: In situations where there is no clear best parametric fit for time-to-event data with moderate level of censoring, the proposed method provides a robust alternative to obtain regression coefficients (both adjusted and unadjusted) with a performance comparable to that of a proportional hazards model." @default.
- W2971775144 created "2019-09-12" @default.
- W2971775144 creator A5074901638 @default.
- W2971775144 date "2019-09-04" @default.
- W2971775144 modified "2023-10-18" @default.
- W2971775144 title "An Updated Algorithm for Moderate Censoring in Time-to-Event Data Using Rank-based Regression" @default.
- W2971775144 doi "https://doi.org/10.9734/ajpas/2019/v5i130127" @default.
- W2971775144 hasPublicationYear "2019" @default.
- W2971775144 type Work @default.
- W2971775144 sameAs 2971775144 @default.
- W2971775144 citedByCount "0" @default.
- W2971775144 crossrefType "journal-article" @default.
- W2971775144 hasAuthorship W2971775144A5074901638 @default.
- W2971775144 hasBestOaLocation W29717751441 @default.
- W2971775144 hasConcept C102366305 @default.
- W2971775144 hasConcept C105795698 @default.
- W2971775144 hasConcept C11413529 @default.
- W2971775144 hasConcept C117251300 @default.
- W2971775144 hasConcept C119043178 @default.
- W2971775144 hasConcept C12868164 @default.
- W2971775144 hasConcept C137668524 @default.
- W2971775144 hasConcept C206041023 @default.
- W2971775144 hasConcept C33114746 @default.
- W2971775144 hasConcept C33923547 @default.
- W2971775144 hasConcept C50382708 @default.
- W2971775144 hasConcept C83546350 @default.
- W2971775144 hasConceptScore W2971775144C102366305 @default.
- W2971775144 hasConceptScore W2971775144C105795698 @default.
- W2971775144 hasConceptScore W2971775144C11413529 @default.
- W2971775144 hasConceptScore W2971775144C117251300 @default.
- W2971775144 hasConceptScore W2971775144C119043178 @default.
- W2971775144 hasConceptScore W2971775144C12868164 @default.
- W2971775144 hasConceptScore W2971775144C137668524 @default.
- W2971775144 hasConceptScore W2971775144C206041023 @default.
- W2971775144 hasConceptScore W2971775144C33114746 @default.
- W2971775144 hasConceptScore W2971775144C33923547 @default.
- W2971775144 hasConceptScore W2971775144C50382708 @default.
- W2971775144 hasConceptScore W2971775144C83546350 @default.
- W2971775144 hasLocation W29717751441 @default.
- W2971775144 hasOpenAccess W2971775144 @default.
- W2971775144 hasPrimaryLocation W29717751441 @default.
- W2971775144 hasRelatedWork W1557584128 @default.
- W2971775144 hasRelatedWork W2019929981 @default.
- W2971775144 hasRelatedWork W2087697546 @default.
- W2971775144 hasRelatedWork W2315042073 @default.
- W2971775144 hasRelatedWork W2328974004 @default.
- W2971775144 hasRelatedWork W2385906403 @default.
- W2971775144 hasRelatedWork W2784100599 @default.
- W2971775144 hasRelatedWork W2907763160 @default.
- W2971775144 hasRelatedWork W3112599007 @default.
- W2971775144 hasRelatedWork W4308165859 @default.
- W2971775144 isParatext "false" @default.
- W2971775144 isRetracted "false" @default.
- W2971775144 magId "2971775144" @default.
- W2971775144 workType "article" @default.