Matches in SemOpenAlex for { <https://semopenalex.org/work/W2971809652> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2971809652 abstract "In the treatment of cancers, the efficacy depends on the correct diagnosis of the nature of tumor as early as possible. Micro-array Gene expression data which contains the expression profiles of entire genome provides a source which can be analyzed to identify bio-markers of cancers. Micro-array data has a large number of features and very few number of samples. To make effective use of this data, it is very beneficial to select a reduced number of genes which can be used for tasks like classification. In this paper, we propose a two level scheme for feature selection and classification of cancers. First, the genes are ranked using Recursive Feature Elimination which uses Random Forest Classifier for evaluation of fitness of genes with five fold cross-validation , later these genes are used to pre-train an Unsupervised Deep Belief Network Classifier to classify the samples based on the selected genes. We compared the results in terms of cross validation matrix parameters viz. classification accuracy, precision and recall, obtained from our approach with the results obtained by using some standard feature selector-classifier combinations viz. Mutual Information with Support Vector Machines, Kernel Principal Component Analysis with Support Vector Machine, Support Vector Machine -Recursive Feature Elimination and Mutual Information with Random Forest Classifier. The results show that our scheme performs at par with standard methods used for feature selection from gene expression data." @default.
- W2971809652 created "2019-09-12" @default.
- W2971809652 creator A5039327378 @default.
- W2971809652 creator A5075942344 @default.
- W2971809652 date "2019-02-01" @default.
- W2971809652 modified "2023-10-16" @default.
- W2971809652 title "A Scheme for Feature Selection from Gene Expression Data using Recursive Feature Elimination with Cross Validation and Unsupervised Deep Belief Network Classifier" @default.
- W2971809652 cites W2090091537 @default.
- W2971809652 cites W2109363337 @default.
- W2971809652 cites W2133000300 @default.
- W2971809652 cites W2136922672 @default.
- W2971809652 cites W2141826465 @default.
- W2971809652 cites W2143426320 @default.
- W2971809652 cites W2155236584 @default.
- W2971809652 cites W2158137698 @default.
- W2971809652 cites W2190746225 @default.
- W2971809652 cites W2344681634 @default.
- W2971809652 cites W2555803041 @default.
- W2971809652 cites W2801381056 @default.
- W2971809652 doi "https://doi.org/10.1109/iccct2.2019.8824943" @default.
- W2971809652 hasPublicationYear "2019" @default.
- W2971809652 type Work @default.
- W2971809652 sameAs 2971809652 @default.
- W2971809652 citedByCount "3" @default.
- W2971809652 countsByYear W29718096522021 @default.
- W2971809652 countsByYear W29718096522023 @default.
- W2971809652 crossrefType "proceedings-article" @default.
- W2971809652 hasAuthorship W2971809652A5039327378 @default.
- W2971809652 hasAuthorship W2971809652A5075942344 @default.
- W2971809652 hasConcept C119857082 @default.
- W2971809652 hasConcept C12267149 @default.
- W2971809652 hasConcept C124101348 @default.
- W2971809652 hasConcept C148483581 @default.
- W2971809652 hasConcept C152139883 @default.
- W2971809652 hasConcept C153180895 @default.
- W2971809652 hasConcept C154945302 @default.
- W2971809652 hasConcept C169258074 @default.
- W2971809652 hasConcept C27181475 @default.
- W2971809652 hasConcept C41008148 @default.
- W2971809652 hasConcept C81669768 @default.
- W2971809652 hasConcept C83665646 @default.
- W2971809652 hasConcept C95623464 @default.
- W2971809652 hasConceptScore W2971809652C119857082 @default.
- W2971809652 hasConceptScore W2971809652C12267149 @default.
- W2971809652 hasConceptScore W2971809652C124101348 @default.
- W2971809652 hasConceptScore W2971809652C148483581 @default.
- W2971809652 hasConceptScore W2971809652C152139883 @default.
- W2971809652 hasConceptScore W2971809652C153180895 @default.
- W2971809652 hasConceptScore W2971809652C154945302 @default.
- W2971809652 hasConceptScore W2971809652C169258074 @default.
- W2971809652 hasConceptScore W2971809652C27181475 @default.
- W2971809652 hasConceptScore W2971809652C41008148 @default.
- W2971809652 hasConceptScore W2971809652C81669768 @default.
- W2971809652 hasConceptScore W2971809652C83665646 @default.
- W2971809652 hasConceptScore W2971809652C95623464 @default.
- W2971809652 hasLocation W29718096521 @default.
- W2971809652 hasOpenAccess W2971809652 @default.
- W2971809652 hasPrimaryLocation W29718096521 @default.
- W2971809652 hasRelatedWork W2016771288 @default.
- W2971809652 hasRelatedWork W2018051788 @default.
- W2971809652 hasRelatedWork W2121926558 @default.
- W2971809652 hasRelatedWork W2160451891 @default.
- W2971809652 hasRelatedWork W2166303055 @default.
- W2971809652 hasRelatedWork W2275058042 @default.
- W2971809652 hasRelatedWork W2378521197 @default.
- W2971809652 hasRelatedWork W2971809652 @default.
- W2971809652 hasRelatedWork W3004034588 @default.
- W2971809652 hasRelatedWork W3031119188 @default.
- W2971809652 isParatext "false" @default.
- W2971809652 isRetracted "false" @default.
- W2971809652 magId "2971809652" @default.
- W2971809652 workType "article" @default.