Matches in SemOpenAlex for { <https://semopenalex.org/work/W2971844163> ?p ?o ?g. }
- W2971844163 endingPage "105745" @default.
- W2971844163 startingPage "105745" @default.
- W2971844163 abstract "The Volterra series consists of a powerful method for the identification of non-linear relationships. However, the identification of the series active basis sets requires intense research in order to reduce the computational burden of such a procedure. This is a result of a large number of measurements being required in order to produce an adequate estimate, due to overparameterization issues. In this work, we present a robust hierarchical evolutionary technique which employs a heuristic initialization and provides robustness against noise. The advanced solution is based on a genetic algorithm which improves on the computational complexity of existing methods without harming the identification accuracy. The impact of the parameters calibration is evaluated for different signal-to-noise levels and several nonlinear systems considered in the literature." @default.
- W2971844163 created "2019-09-12" @default.
- W2971844163 creator A5005019913 @default.
- W2971844163 creator A5044901219 @default.
- W2971844163 creator A5047733466 @default.
- W2971844163 creator A5089528829 @default.
- W2971844163 date "2019-12-01" @default.
- W2971844163 modified "2023-09-27" @default.
- W2971844163 title "Efficient Volterra systems identification using hierarchical genetic algorithms" @default.
- W2971844163 cites W1969514971 @default.
- W2971844163 cites W1988365591 @default.
- W2971844163 cites W1991830788 @default.
- W2971844163 cites W2001711707 @default.
- W2971844163 cites W2004512235 @default.
- W2971844163 cites W2015889748 @default.
- W2971844163 cites W2019034316 @default.
- W2971844163 cites W2031473813 @default.
- W2971844163 cites W2043151544 @default.
- W2971844163 cites W2044351729 @default.
- W2971844163 cites W2067592249 @default.
- W2971844163 cites W2077743076 @default.
- W2971844163 cites W2078481280 @default.
- W2971844163 cites W2090826610 @default.
- W2971844163 cites W2104495079 @default.
- W2971844163 cites W2113713615 @default.
- W2971844163 cites W2134126579 @default.
- W2971844163 cites W2134578073 @default.
- W2971844163 cites W2136554306 @default.
- W2971844163 cites W2143451729 @default.
- W2971844163 cites W2151606475 @default.
- W2971844163 cites W2153680907 @default.
- W2971844163 cites W2156194072 @default.
- W2971844163 cites W2156608785 @default.
- W2971844163 cites W2160068178 @default.
- W2971844163 cites W2169692087 @default.
- W2971844163 cites W2170189305 @default.
- W2971844163 cites W2185170263 @default.
- W2971844163 cites W2199437518 @default.
- W2971844163 cites W2468644713 @default.
- W2971844163 cites W2507018519 @default.
- W2971844163 cites W2566844154 @default.
- W2971844163 cites W2592555296 @default.
- W2971844163 cites W2731113388 @default.
- W2971844163 cites W2740167425 @default.
- W2971844163 cites W2766359152 @default.
- W2971844163 cites W2769582118 @default.
- W2971844163 cites W2772970336 @default.
- W2971844163 cites W2774588889 @default.
- W2971844163 cites W2781324069 @default.
- W2971844163 cites W2781529470 @default.
- W2971844163 cites W2785579789 @default.
- W2971844163 cites W2786473036 @default.
- W2971844163 cites W2791714334 @default.
- W2971844163 cites W2794129249 @default.
- W2971844163 cites W2805499774 @default.
- W2971844163 cites W2805797200 @default.
- W2971844163 cites W2848500767 @default.
- W2971844163 cites W2896841865 @default.
- W2971844163 cites W2897161358 @default.
- W2971844163 cites W2899401559 @default.
- W2971844163 cites W2899485917 @default.
- W2971844163 cites W2916994210 @default.
- W2971844163 cites W2922190955 @default.
- W2971844163 cites W2933621682 @default.
- W2971844163 cites W3098939131 @default.
- W2971844163 doi "https://doi.org/10.1016/j.asoc.2019.105745" @default.
- W2971844163 hasPublicationYear "2019" @default.
- W2971844163 type Work @default.
- W2971844163 sameAs 2971844163 @default.
- W2971844163 citedByCount "14" @default.
- W2971844163 countsByYear W29718441632020 @default.
- W2971844163 countsByYear W29718441632021 @default.
- W2971844163 countsByYear W29718441632022 @default.
- W2971844163 countsByYear W29718441632023 @default.
- W2971844163 crossrefType "journal-article" @default.
- W2971844163 hasAuthorship W2971844163A5005019913 @default.
- W2971844163 hasAuthorship W2971844163A5044901219 @default.
- W2971844163 hasAuthorship W2971844163A5047733466 @default.
- W2971844163 hasAuthorship W2971844163A5089528829 @default.
- W2971844163 hasConcept C104317684 @default.
- W2971844163 hasConcept C11413529 @default.
- W2971844163 hasConcept C114466953 @default.
- W2971844163 hasConcept C115961682 @default.
- W2971844163 hasConcept C116834253 @default.
- W2971844163 hasConcept C119247159 @default.
- W2971844163 hasConcept C119857082 @default.
- W2971844163 hasConcept C121332964 @default.
- W2971844163 hasConcept C124101348 @default.
- W2971844163 hasConcept C126255220 @default.
- W2971844163 hasConcept C143724316 @default.
- W2971844163 hasConcept C151730666 @default.
- W2971844163 hasConcept C154945302 @default.
- W2971844163 hasConcept C158622935 @default.
- W2971844163 hasConcept C173801870 @default.
- W2971844163 hasConcept C179799912 @default.
- W2971844163 hasConcept C185592680 @default.
- W2971844163 hasConcept C199360897 @default.
- W2971844163 hasConcept C22157029 @default.