Matches in SemOpenAlex for { <https://semopenalex.org/work/W2971879956> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2971879956 endingPage "489" @default.
- W2971879956 startingPage "465" @default.
- W2971879956 abstract "Around the world, most of the proposed techniques for the identification of sarcasm either take the utterance in isolation or these methods only perform the categorization of the textual data. Very limited work has been done on how to train or manipulate the various parameters related to textual data so that to improve on the accuracy of the classification method. In this article, we are trying to identify the sarcasm in the textual data using neural networks. We have tried to classify the data using convolutional neural networks (CNN), recurrent neural networks (RNN) and a blend of these techniques to improve accuracy. Our work is not limited to the classification of the sarcastic text, we have also tried to measure the impact of the training data, number of epochs and amount of dropout in the network. The paper also discusses the impact of various embedding on the dataset when converting the same dataset into vectors via different word embeddings. We measured the influence of various parameters on the very large-scale Reddit1 corpus." @default.
- W2971879956 created "2019-09-12" @default.
- W2971879956 creator A5034284176 @default.
- W2971879956 creator A5069086313 @default.
- W2971879956 date "2019-05-19" @default.
- W2971879956 modified "2023-10-18" @default.
- W2971879956 title "Identification of sarcasm using word embeddings and hyperparameters tuning" @default.
- W2971879956 cites W2041400887 @default.
- W2971879956 cites W2064675550 @default.
- W2971879956 cites W2112796928 @default.
- W2971879956 cites W2202250803 @default.
- W2971879956 cites W2271153056 @default.
- W2971879956 cites W2613186477 @default.
- W2971879956 cites W2734797515 @default.
- W2971879956 cites W2764185841 @default.
- W2971879956 cites W2792562416 @default.
- W2971879956 doi "https://doi.org/10.1080/09720529.2019.1637152" @default.
- W2971879956 hasPublicationYear "2019" @default.
- W2971879956 type Work @default.
- W2971879956 sameAs 2971879956 @default.
- W2971879956 citedByCount "18" @default.
- W2971879956 countsByYear W29718799562020 @default.
- W2971879956 countsByYear W29718799562021 @default.
- W2971879956 countsByYear W29718799562022 @default.
- W2971879956 countsByYear W29718799562023 @default.
- W2971879956 crossrefType "journal-article" @default.
- W2971879956 hasAuthorship W2971879956A5034284176 @default.
- W2971879956 hasAuthorship W2971879956A5069086313 @default.
- W2971879956 hasConcept C116834253 @default.
- W2971879956 hasConcept C119857082 @default.
- W2971879956 hasConcept C124952713 @default.
- W2971879956 hasConcept C137546455 @default.
- W2971879956 hasConcept C142362112 @default.
- W2971879956 hasConcept C147168706 @default.
- W2971879956 hasConcept C153180895 @default.
- W2971879956 hasConcept C154945302 @default.
- W2971879956 hasConcept C204321447 @default.
- W2971879956 hasConcept C2524010 @default.
- W2971879956 hasConcept C2775852435 @default.
- W2971879956 hasConcept C2776207355 @default.
- W2971879956 hasConcept C2777462759 @default.
- W2971879956 hasConcept C2779975665 @default.
- W2971879956 hasConcept C33923547 @default.
- W2971879956 hasConcept C41008148 @default.
- W2971879956 hasConcept C41608201 @default.
- W2971879956 hasConcept C50644808 @default.
- W2971879956 hasConcept C59822182 @default.
- W2971879956 hasConcept C81363708 @default.
- W2971879956 hasConcept C8642999 @default.
- W2971879956 hasConcept C86803240 @default.
- W2971879956 hasConcept C90805587 @default.
- W2971879956 hasConceptScore W2971879956C116834253 @default.
- W2971879956 hasConceptScore W2971879956C119857082 @default.
- W2971879956 hasConceptScore W2971879956C124952713 @default.
- W2971879956 hasConceptScore W2971879956C137546455 @default.
- W2971879956 hasConceptScore W2971879956C142362112 @default.
- W2971879956 hasConceptScore W2971879956C147168706 @default.
- W2971879956 hasConceptScore W2971879956C153180895 @default.
- W2971879956 hasConceptScore W2971879956C154945302 @default.
- W2971879956 hasConceptScore W2971879956C204321447 @default.
- W2971879956 hasConceptScore W2971879956C2524010 @default.
- W2971879956 hasConceptScore W2971879956C2775852435 @default.
- W2971879956 hasConceptScore W2971879956C2776207355 @default.
- W2971879956 hasConceptScore W2971879956C2777462759 @default.
- W2971879956 hasConceptScore W2971879956C2779975665 @default.
- W2971879956 hasConceptScore W2971879956C33923547 @default.
- W2971879956 hasConceptScore W2971879956C41008148 @default.
- W2971879956 hasConceptScore W2971879956C41608201 @default.
- W2971879956 hasConceptScore W2971879956C50644808 @default.
- W2971879956 hasConceptScore W2971879956C59822182 @default.
- W2971879956 hasConceptScore W2971879956C81363708 @default.
- W2971879956 hasConceptScore W2971879956C8642999 @default.
- W2971879956 hasConceptScore W2971879956C86803240 @default.
- W2971879956 hasConceptScore W2971879956C90805587 @default.
- W2971879956 hasIssue "4" @default.
- W2971879956 hasLocation W29718799561 @default.
- W2971879956 hasOpenAccess W2971879956 @default.
- W2971879956 hasPrimaryLocation W29718799561 @default.
- W2971879956 hasRelatedWork W2175675225 @default.
- W2971879956 hasRelatedWork W2250204095 @default.
- W2971879956 hasRelatedWork W2359001871 @default.
- W2971879956 hasRelatedWork W2767651786 @default.
- W2971879956 hasRelatedWork W3027997911 @default.
- W2971879956 hasRelatedWork W4210794429 @default.
- W2971879956 hasRelatedWork W4223456145 @default.
- W2971879956 hasRelatedWork W4287776258 @default.
- W2971879956 hasRelatedWork W4295309597 @default.
- W2971879956 hasRelatedWork W4309113015 @default.
- W2971879956 hasVolume "22" @default.
- W2971879956 isParatext "false" @default.
- W2971879956 isRetracted "false" @default.
- W2971879956 magId "2971879956" @default.
- W2971879956 workType "article" @default.