Matches in SemOpenAlex for { <https://semopenalex.org/work/W2971927438> ?p ?o ?g. }
- W2971927438 endingPage "312" @default.
- W2971927438 startingPage "302" @default.
- W2971927438 abstract "In this paper, we present a real-time pedestrian detection system that has been trained using a virtual environment. This is a very popular topic of research having endless practical applications and recently, there was an increasing interest in deep learning architectures for performing such a task. However, the availability of large labeled datasets is a key point for an effective train of such algorithms. For this reason, in this work, we introduced ViPeD, a new synthetically generated set of images extracted from a realistic 3D video game where the labels can be automatically generated exploiting 2D pedestrian positions extracted from the graphics engine. We exploited this new synthetic dataset fine-tuning a state-of-the-art computationally efficient Convolutional Neural Network (CNN). A preliminary experimental evaluation, compared to the performance of other existing approaches trained on real-world images, shows encouraging results." @default.
- W2971927438 created "2019-09-12" @default.
- W2971927438 creator A5007125882 @default.
- W2971927438 creator A5047189288 @default.
- W2971927438 creator A5062065690 @default.
- W2971927438 creator A5072396889 @default.
- W2971927438 creator A5072879702 @default.
- W2971927438 date "2019-01-01" @default.
- W2971927438 modified "2023-10-01" @default.
- W2971927438 title "Learning Pedestrian Detection from Virtual Worlds" @default.
- W2971927438 cites W1650122911 @default.
- W2971927438 cites W1861492603 @default.
- W2971927438 cites W2031454541 @default.
- W2971927438 cites W2033547469 @default.
- W2971927438 cites W2036242214 @default.
- W2971927438 cites W2074777933 @default.
- W2971927438 cites W2081021369 @default.
- W2971927438 cites W2108598243 @default.
- W2971927438 cites W2112796928 @default.
- W2971927438 cites W2153062878 @default.
- W2971927438 cites W2162741153 @default.
- W2971927438 cites W2200528286 @default.
- W2971927438 cites W2474389331 @default.
- W2971927438 cites W2490270993 @default.
- W2971927438 cites W2553497478 @default.
- W2971927438 cites W2594507094 @default.
- W2971927438 cites W2895077992 @default.
- W2971927438 cites W2962850098 @default.
- W2971927438 cites W2963730616 @default.
- W2971927438 cites W2964238416 @default.
- W2971927438 doi "https://doi.org/10.1007/978-3-030-30642-7_27" @default.
- W2971927438 hasPublicationYear "2019" @default.
- W2971927438 type Work @default.
- W2971927438 sameAs 2971927438 @default.
- W2971927438 citedByCount "15" @default.
- W2971927438 countsByYear W29719274382020 @default.
- W2971927438 countsByYear W29719274382021 @default.
- W2971927438 countsByYear W29719274382022 @default.
- W2971927438 countsByYear W29719274382023 @default.
- W2971927438 crossrefType "book-chapter" @default.
- W2971927438 hasAuthorship W2971927438A5007125882 @default.
- W2971927438 hasAuthorship W2971927438A5047189288 @default.
- W2971927438 hasAuthorship W2971927438A5062065690 @default.
- W2971927438 hasAuthorship W2971927438A5072396889 @default.
- W2971927438 hasAuthorship W2971927438A5072879702 @default.
- W2971927438 hasConcept C108583219 @default.
- W2971927438 hasConcept C119857082 @default.
- W2971927438 hasConcept C121684516 @default.
- W2971927438 hasConcept C127413603 @default.
- W2971927438 hasConcept C154945302 @default.
- W2971927438 hasConcept C162324750 @default.
- W2971927438 hasConcept C177264268 @default.
- W2971927438 hasConcept C187736073 @default.
- W2971927438 hasConcept C199360897 @default.
- W2971927438 hasConcept C21442007 @default.
- W2971927438 hasConcept C22212356 @default.
- W2971927438 hasConcept C2524010 @default.
- W2971927438 hasConcept C26517878 @default.
- W2971927438 hasConcept C2777113093 @default.
- W2971927438 hasConcept C2780156472 @default.
- W2971927438 hasConcept C2780451532 @default.
- W2971927438 hasConcept C28719098 @default.
- W2971927438 hasConcept C31972630 @default.
- W2971927438 hasConcept C33923547 @default.
- W2971927438 hasConcept C38652104 @default.
- W2971927438 hasConcept C41008148 @default.
- W2971927438 hasConcept C77660652 @default.
- W2971927438 hasConcept C81363708 @default.
- W2971927438 hasConceptScore W2971927438C108583219 @default.
- W2971927438 hasConceptScore W2971927438C119857082 @default.
- W2971927438 hasConceptScore W2971927438C121684516 @default.
- W2971927438 hasConceptScore W2971927438C127413603 @default.
- W2971927438 hasConceptScore W2971927438C154945302 @default.
- W2971927438 hasConceptScore W2971927438C162324750 @default.
- W2971927438 hasConceptScore W2971927438C177264268 @default.
- W2971927438 hasConceptScore W2971927438C187736073 @default.
- W2971927438 hasConceptScore W2971927438C199360897 @default.
- W2971927438 hasConceptScore W2971927438C21442007 @default.
- W2971927438 hasConceptScore W2971927438C22212356 @default.
- W2971927438 hasConceptScore W2971927438C2524010 @default.
- W2971927438 hasConceptScore W2971927438C26517878 @default.
- W2971927438 hasConceptScore W2971927438C2777113093 @default.
- W2971927438 hasConceptScore W2971927438C2780156472 @default.
- W2971927438 hasConceptScore W2971927438C2780451532 @default.
- W2971927438 hasConceptScore W2971927438C28719098 @default.
- W2971927438 hasConceptScore W2971927438C31972630 @default.
- W2971927438 hasConceptScore W2971927438C33923547 @default.
- W2971927438 hasConceptScore W2971927438C38652104 @default.
- W2971927438 hasConceptScore W2971927438C41008148 @default.
- W2971927438 hasConceptScore W2971927438C77660652 @default.
- W2971927438 hasConceptScore W2971927438C81363708 @default.
- W2971927438 hasLocation W29719274381 @default.
- W2971927438 hasOpenAccess W2971927438 @default.
- W2971927438 hasPrimaryLocation W29719274381 @default.
- W2971927438 hasRelatedWork W2558093053 @default.
- W2971927438 hasRelatedWork W2731899572 @default.
- W2971927438 hasRelatedWork W2911294201 @default.
- W2971927438 hasRelatedWork W2913302899 @default.