Matches in SemOpenAlex for { <https://semopenalex.org/work/W2971973187> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2971973187 endingPage "1068" @default.
- W2971973187 startingPage "1009" @default.
- W2971973187 abstract "We study the Newton polytopes of determinants of square matrices defined over rings of twisted Laurent polynomials. We prove that such Newton polytopes are single polytopes (rather than formal differences of two polytopes); this result can be seen as analogous to the fact that determinants of matrices over commutative Laurent polynomial rings are themselves polynomials, rather than rational functions. We also exhibit a relationship between the Newton polytopes and invertibility of the matrices over Novikov rings, thus establishing a connection with the invariants of Bieri-Neumann-Strebel (BNS) via a theorem of Sikorav. We offer several applications: we reprove Thurston's theorem on the existence of a polytope controlling the BNS invariants of a $3$-manifold group; we extend this result to free-by-cyclic groups, and the more general descending HNN extensions of free groups. We also show that the BNS invariants of Poincar'e duality groups of type $mathtt{F}$ in dimension $3$ and groups of deficiency one are determined by a polytope, when the groups are assumed to be agrarian, that is their integral group rings embed in skew-fields. The latter result partially confirms a conjecture of Friedl. We also deduce the vanishing of the Newton polytopes associated to elements of the Whitehead groups of many groups satisfying the Atiyah conjecture. We use this to show that the $L^2$-torsion polytope of Friedl-Luck is invariant under homotopy. We prove the vanishing of this polytope in the presence of amenability, thus proving a conjecture of Friedl-Luck-Tillmann." @default.
- W2971973187 created "2019-09-12" @default.
- W2971973187 creator A5061583203 @default.
- W2971973187 date "2019-09-07" @default.
- W2971973187 modified "2023-09-27" @default.
- W2971973187 title "The Bieri–Neumann–Strebel invariants via Newton polytopes" @default.
- W2971973187 cites W1503316946 @default.
- W2971973187 cites W1521637235 @default.
- W2971973187 cites W1580026198 @default.
- W2971973187 cites W1700548231 @default.
- W2971973187 cites W1969046746 @default.
- W2971973187 cites W1982201979 @default.
- W2971973187 cites W1986937739 @default.
- W2971973187 cites W1989276000 @default.
- W2971973187 cites W1997607678 @default.
- W2971973187 cites W2009822331 @default.
- W2971973187 cites W2012015071 @default.
- W2971973187 cites W2023806008 @default.
- W2971973187 cites W2025687961 @default.
- W2971973187 cites W2027857091 @default.
- W2971973187 cites W2034523978 @default.
- W2971973187 cites W2041011341 @default.
- W2971973187 cites W2047298806 @default.
- W2971973187 cites W2049451939 @default.
- W2971973187 cites W2063331588 @default.
- W2971973187 cites W2068996638 @default.
- W2971973187 cites W2076669938 @default.
- W2971973187 cites W2085384952 @default.
- W2971973187 cites W2085827110 @default.
- W2971973187 cites W2086023871 @default.
- W2971973187 cites W2113091533 @default.
- W2971973187 cites W2120047595 @default.
- W2971973187 cites W2164815243 @default.
- W2971973187 cites W2270763918 @default.
- W2971973187 cites W2317299392 @default.
- W2971973187 cites W2320189820 @default.
- W2971973187 cites W2328309467 @default.
- W2971973187 cites W2347098154 @default.
- W2971973187 cites W2471750801 @default.
- W2971973187 cites W248073269 @default.
- W2971973187 cites W2497791409 @default.
- W2971973187 cites W2949775085 @default.
- W2971973187 cites W2963090711 @default.
- W2971973187 cites W2963226484 @default.
- W2971973187 cites W2963273309 @default.
- W2971973187 cites W2963296215 @default.
- W2971973187 cites W2963297777 @default.
- W2971973187 cites W2963935825 @default.
- W2971973187 cites W3102730101 @default.
- W2971973187 cites W3104644135 @default.
- W2971973187 cites W3124252550 @default.
- W2971973187 doi "https://doi.org/10.1007/s00222-019-00919-9" @default.
- W2971973187 hasPublicationYear "2019" @default.
- W2971973187 type Work @default.
- W2971973187 sameAs 2971973187 @default.
- W2971973187 citedByCount "20" @default.
- W2971973187 countsByYear W29719731872019 @default.
- W2971973187 countsByYear W29719731872020 @default.
- W2971973187 countsByYear W29719731872021 @default.
- W2971973187 countsByYear W29719731872022 @default.
- W2971973187 countsByYear W29719731872023 @default.
- W2971973187 crossrefType "journal-article" @default.
- W2971973187 hasAuthorship W2971973187A5061583203 @default.
- W2971973187 hasBestOaLocation W29719731872 @default.
- W2971973187 hasConcept C114614502 @default.
- W2971973187 hasConcept C145691206 @default.
- W2971973187 hasConcept C202444582 @default.
- W2971973187 hasConcept C2780990831 @default.
- W2971973187 hasConcept C33923547 @default.
- W2971973187 hasConceptScore W2971973187C114614502 @default.
- W2971973187 hasConceptScore W2971973187C145691206 @default.
- W2971973187 hasConceptScore W2971973187C202444582 @default.
- W2971973187 hasConceptScore W2971973187C2780990831 @default.
- W2971973187 hasConceptScore W2971973187C33923547 @default.
- W2971973187 hasIssue "3" @default.
- W2971973187 hasLocation W29719731871 @default.
- W2971973187 hasLocation W29719731872 @default.
- W2971973187 hasLocation W29719731873 @default.
- W2971973187 hasOpenAccess W2971973187 @default.
- W2971973187 hasPrimaryLocation W29719731871 @default.
- W2971973187 hasRelatedWork W2057551462 @default.
- W2971973187 hasRelatedWork W2086770023 @default.
- W2971973187 hasRelatedWork W2606009334 @default.
- W2971973187 hasRelatedWork W2897153210 @default.
- W2971973187 hasRelatedWork W2952558475 @default.
- W2971973187 hasRelatedWork W3026358768 @default.
- W2971973187 hasRelatedWork W3049754847 @default.
- W2971973187 hasRelatedWork W3099537220 @default.
- W2971973187 hasRelatedWork W3153743757 @default.
- W2971973187 hasRelatedWork W4200431641 @default.
- W2971973187 hasVolume "219" @default.
- W2971973187 isParatext "false" @default.
- W2971973187 isRetracted "false" @default.
- W2971973187 magId "2971973187" @default.
- W2971973187 workType "article" @default.