Matches in SemOpenAlex for { <https://semopenalex.org/work/W2972002110> ?p ?o ?g. }
Showing items 1 to 46 of
46
with 100 items per page.
- W2972002110 abstract "Rough Set Theory (RST), proposed by Z Pawlak, is a new mathematical model for uncertain data [2]. Tools based on RST are mainly useful for data mining tasks such as classification and rule mining. Rule Induction is part of Machine learning in which the rules are extracted from set of observations [10]. Rules generation always have important role in data mining and provide some connection between attributes which are helpful for decision making. A problem for conventional rule algorithms is that there are too many rules generated which are very difficult to analyze [1]. This paper proposes a rough set based approach to generate rules from an consistent information system. The preprocessed data collected from LA (Lower Approximation) and UA (Upper Approximation) concepts [12]. The paper includes implementation of LEM2 algorithm for different count of conditional attributes considering sixteen cases or objects. By increasing conditional attributes in our design the circuit is affected by increasing LUT utilization, increasing register count, increasing Power, decreasing speed, increasing Area and increasing gate count also." @default.
- W2972002110 created "2019-09-12" @default.
- W2972002110 creator A5004974180 @default.
- W2972002110 creator A5039009181 @default.
- W2972002110 date "2019-06-01" @default.
- W2972002110 modified "2023-10-01" @default.
- W2972002110 title "Implementation Of LEM2 algorithm On FPGA" @default.
- W2972002110 cites W1495001529 @default.
- W2972002110 cites W1533789439 @default.
- W2972002110 cites W1997562696 @default.
- W2972002110 cites W2140837674 @default.
- W2972002110 cites W2141680637 @default.
- W2972002110 cites W2513071063 @default.
- W2972002110 cites W2555933387 @default.
- W2972002110 doi "https://doi.org/10.1109/iceca.2019.8822143" @default.
- W2972002110 hasPublicationYear "2019" @default.
- W2972002110 type Work @default.
- W2972002110 sameAs 2972002110 @default.
- W2972002110 citedByCount "1" @default.
- W2972002110 countsByYear W29720021102021 @default.
- W2972002110 crossrefType "proceedings-article" @default.
- W2972002110 hasAuthorship W2972002110A5004974180 @default.
- W2972002110 hasAuthorship W2972002110A5039009181 @default.
- W2972002110 hasConcept C41008148 @default.
- W2972002110 hasConcept C42935608 @default.
- W2972002110 hasConcept C9390403 @default.
- W2972002110 hasConceptScore W2972002110C41008148 @default.
- W2972002110 hasConceptScore W2972002110C42935608 @default.
- W2972002110 hasConceptScore W2972002110C9390403 @default.
- W2972002110 hasLocation W29720021101 @default.
- W2972002110 hasOpenAccess W2972002110 @default.
- W2972002110 hasPrimaryLocation W29720021101 @default.
- W2972002110 hasRelatedWork W1002902646 @default.
- W2972002110 hasRelatedWork W2016389538 @default.
- W2972002110 hasRelatedWork W2063534976 @default.
- W2972002110 hasRelatedWork W2095345650 @default.
- W2972002110 hasRelatedWork W2352296208 @default.
- W2972002110 hasRelatedWork W2356095770 @default.
- W2972002110 hasRelatedWork W2363391165 @default.
- W2972002110 hasRelatedWork W2365743651 @default.
- W2972002110 hasRelatedWork W2388618054 @default.
- W2972002110 hasRelatedWork W2980006224 @default.
- W2972002110 isParatext "false" @default.
- W2972002110 isRetracted "false" @default.
- W2972002110 magId "2972002110" @default.
- W2972002110 workType "article" @default.