Matches in SemOpenAlex for { <https://semopenalex.org/work/W2972073716> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2972073716 endingPage "101669" @default.
- W2972073716 startingPage "101669" @default.
- W2972073716 abstract "Abstract The classification of surface electromyography (sEMG) signal has an important usage in the man-machine interfaces for proper controlling of prosthetic devices with multiple degrees of freedom. The vital research aspects in this field mainly focus on data acquisition, pre-processing, feature extraction and classification along with their feasibility in practical scenarios regarding implementation and reliability. In this article, we have demonstrated a detailed empirical exploration on Deep Neural Network (DNN) based classification system for the upper limb position invariant myoelectric signal. The classification of eight different hand movements is performed using a fully connected feed-forward DNN model and also compared with the existing machine learning tools. In our analysis, we have used a dataset consisting of the sEMG signals collected from eleven subjects at five different upper limb positions. The time domain power spectral descriptors (TDPSD) is used as the feature set to train the DNN classifier. In contrast to the prior methods, the proposed approach excludes the feature dimensionality reduction step, which in turn significantly reduce the overall complexity. As the EMG signal classification is a subject-specific problem, the DNN model is customized for each subject separately to get the best possible results. Our experimental results in various analysis frameworks demonstrate that DNN based system can outperform the other existing classifiers such as k-Nearest Neighbour (kNN), Random Forest, and Decision Tree. The average accuracy obtained among the five subjects for DNN, SVM, kNN, Random Forest and Decision Tree is 98.88%, 98.66%, 90.64%, 91.78%, and 88.36% respectively. Moreover, it can achieve competitive performance with the state-of-the-art SVM based model, even though the proposed DNN model requires minimal processing in feature engineering. This study provides an insight into the detailed step-by-step empirical procedure to achieve the optimum results regarding classification accuracy using the DNN model." @default.
- W2972073716 created "2019-09-12" @default.
- W2972073716 creator A5059589952 @default.
- W2972073716 creator A5076218062 @default.
- W2972073716 date "2020-01-01" @default.
- W2972073716 modified "2023-10-17" @default.
- W2972073716 title "An experimental study on upper limb position invariant EMG signal classification based on deep neural network" @default.
- W2972073716 cites W1498436455 @default.
- W2972073716 cites W1965560603 @default.
- W2972073716 cites W2004158418 @default.
- W2972073716 cites W2004797722 @default.
- W2972073716 cites W2013463953 @default.
- W2972073716 cites W2044628302 @default.
- W2972073716 cites W2066327120 @default.
- W2972073716 cites W2097690077 @default.
- W2972073716 cites W2116871167 @default.
- W2972073716 cites W2122612627 @default.
- W2972073716 cites W2123167643 @default.
- W2972073716 cites W2125585124 @default.
- W2972073716 cites W2128041971 @default.
- W2972073716 cites W2129005848 @default.
- W2972073716 cites W2134408600 @default.
- W2972073716 cites W2147259799 @default.
- W2972073716 cites W2148268262 @default.
- W2972073716 cites W2149250980 @default.
- W2972073716 cites W2153727374 @default.
- W2972073716 cites W2158728671 @default.
- W2972073716 cites W2165619603 @default.
- W2972073716 cites W2169931829 @default.
- W2972073716 cites W2171188488 @default.
- W2972073716 cites W2243789297 @default.
- W2972073716 cites W2310313792 @default.
- W2972073716 cites W2413089822 @default.
- W2972073716 cites W2516710120 @default.
- W2972073716 cites W2561981131 @default.
- W2972073716 cites W2756980343 @default.
- W2972073716 cites W2762718731 @default.
- W2972073716 cites W2788541406 @default.
- W2972073716 cites W2899269477 @default.
- W2972073716 cites W2919115771 @default.
- W2972073716 doi "https://doi.org/10.1016/j.bspc.2019.101669" @default.
- W2972073716 hasPublicationYear "2020" @default.
- W2972073716 type Work @default.
- W2972073716 sameAs 2972073716 @default.
- W2972073716 citedByCount "81" @default.
- W2972073716 countsByYear W29720737162020 @default.
- W2972073716 countsByYear W29720737162021 @default.
- W2972073716 countsByYear W29720737162022 @default.
- W2972073716 countsByYear W29720737162023 @default.
- W2972073716 crossrefType "journal-article" @default.
- W2972073716 hasAuthorship W2972073716A5059589952 @default.
- W2972073716 hasAuthorship W2972073716A5076218062 @default.
- W2972073716 hasConcept C10138342 @default.
- W2972073716 hasConcept C153180895 @default.
- W2972073716 hasConcept C154945302 @default.
- W2972073716 hasConcept C162324750 @default.
- W2972073716 hasConcept C190470478 @default.
- W2972073716 hasConcept C198082294 @default.
- W2972073716 hasConcept C28490314 @default.
- W2972073716 hasConcept C33923547 @default.
- W2972073716 hasConcept C37914503 @default.
- W2972073716 hasConcept C41008148 @default.
- W2972073716 hasConcept C50644808 @default.
- W2972073716 hasConcept C71924100 @default.
- W2972073716 hasConcept C99508421 @default.
- W2972073716 hasConceptScore W2972073716C10138342 @default.
- W2972073716 hasConceptScore W2972073716C153180895 @default.
- W2972073716 hasConceptScore W2972073716C154945302 @default.
- W2972073716 hasConceptScore W2972073716C162324750 @default.
- W2972073716 hasConceptScore W2972073716C190470478 @default.
- W2972073716 hasConceptScore W2972073716C198082294 @default.
- W2972073716 hasConceptScore W2972073716C28490314 @default.
- W2972073716 hasConceptScore W2972073716C33923547 @default.
- W2972073716 hasConceptScore W2972073716C37914503 @default.
- W2972073716 hasConceptScore W2972073716C41008148 @default.
- W2972073716 hasConceptScore W2972073716C50644808 @default.
- W2972073716 hasConceptScore W2972073716C71924100 @default.
- W2972073716 hasConceptScore W2972073716C99508421 @default.
- W2972073716 hasFunder F4320322724 @default.
- W2972073716 hasLocation W29720737161 @default.
- W2972073716 hasOpenAccess W2972073716 @default.
- W2972073716 hasPrimaryLocation W29720737161 @default.
- W2972073716 hasRelatedWork W2025991752 @default.
- W2972073716 hasRelatedWork W2033914206 @default.
- W2972073716 hasRelatedWork W2146076056 @default.
- W2972073716 hasRelatedWork W2163831990 @default.
- W2972073716 hasRelatedWork W2294451595 @default.
- W2972073716 hasRelatedWork W2319337512 @default.
- W2972073716 hasRelatedWork W2353481744 @default.
- W2972073716 hasRelatedWork W2386387936 @default.
- W2972073716 hasRelatedWork W2893763841 @default.
- W2972073716 hasRelatedWork W3003836766 @default.
- W2972073716 hasVolume "55" @default.
- W2972073716 isParatext "false" @default.
- W2972073716 isRetracted "false" @default.
- W2972073716 magId "2972073716" @default.
- W2972073716 workType "article" @default.