Matches in SemOpenAlex for { <https://semopenalex.org/work/W2972085114> ?p ?o ?g. }
- W2972085114 endingPage "1950" @default.
- W2972085114 startingPage "1949" @default.
- W2972085114 abstract "The recent article by Stopard et al.[1] investigated how ‘real-world’ constraints in mathematical modelling analyses affect recommendations for resource allocation. This is an important question: the guidance that models provide on optimal HIV responses should always be considered in light of the full health system context, which may differ greatly from what would be modelled if the realities of logistic, political, ethical and programmatic constraints were ignored. Recommending an unconstrained ‘optimal’ HIV response is unhelpful at best and counterproductive at worst. Although we commend Stopard et al.[1] for bringing attention to this topic, it is already well-trodden territory for both HIV resource allocation studies and health economics modelling overall. A recent review by Mikkelsen et al.[2] provided suggestions for integrating supply- and demand-side health system constraints into HIV cost-effectiveness analyses, including improved discussion between researchers and policymakers. Other examples include Chiu et al.[3], who investigated the importance of constraints regarding how interventions interact, leading to diminishing returns; and the STDSIM model, which allows supply- and demand-side constraints for antiretroviral therapy [4]. In Disease Control Priorities’ broad health system analyses [5], model-based recommendations on cost-effectiveness are constrained by the need to advance other objectives including equity of access and financial risk protection, as well as the capacity of delivery platforms to provide these services. The International Society for Pharmacoeconomics and Outcomes Research (ISPOR) series of Good Practices for Outcomes Research reports have described guidelines for addressing real-world constraints [6], and have applied these to a range of problem types [7]. The examples cited in the previous paragraph make a case for incorporating constraints based on real-world data. However, the constraints considered by Stopard et al.[1] do not seem to fit this description. The authors, first, make the assumption, without citing evidence, of 12.5–45.0% maximum coverage for certain programmes (which the authors term ‘technical efficiency’, although this may be more appropriately considered as a supply- and demand-side constraint) while continuing to assume 100% coverage is attainable for other programmes, even those targeting vulnerable populations such as female sex workers, who are often hardest to reach; second, include a constraint – pre-exposure prophylaxis (PrEP) for all heterosexual women – that no country or funding body has or would be likely to implement; and third, assume that supply-side constraints remain constant over the 15-year simulation period. In our own work, we developed the Optima HIV model to address practical policy questions in the context of realistic constraints. Stopard et al.[1] claim that allocative efficiency studies ‘tend to be naïve to the constraints under which health programmes operate’. However, the study they cite from our group, by Kelly et al.[8], explicitly included numerous constraints, namely, first, that funding to antiretroviral therapy, prevention of mother-to-child transmission and opiate substitution therapy could not decrease due to the ethical requirements to maintain people on treatment once initiated (what Stopard et al.[1] term ‘earmarking’); second, domestic versus various sources of international financing could not be arbitrarily reallocated (‘minimizing change’); and third, programmes could not exceed maximum coverage constraints (what Stopard et al.[1] term ‘technical efficiency’). Indeed, constraints have been a continuous theme of our group's publications since the early 2000s [9–16]. Other constraints available in Optima HIV include, first, demand and supply-side constraints in programme scale-up and scale-down, including both rate of change and overall values [17]; second, political preferences for certain programmes; third, constraints on programme coverage, such as scaling up treatment to meet targets; fourth, Pareto-type constraints to protect particular groups, such as vulnerable populations [18]; fifth, constraints on service provision due to human capital and/or infrastructure [19]; and sixth, scaling nontargeted programmes, such as management, administration, surveillance, enabling environment and so on. We typically analyse these programme costs separately as part of a technical efficiency analysis, based on appropriate benchmarking and/or detailed cost accounting, which can help countries understand whether their attention is best focused on allocative or technical efficiency [20]. We will continue to recommend that users conducting analyses using Optima models consider and utilize appropriate constraints. Furthermore, we will continue to include constraints in our model-based analyses, whether using Optima models or otherwise, and we encourage other modelling groups to do the same, critically ensuring that constraints are informed by real-world data, so they do not merely remain a ‘naïve’ modelling exercise. Acknowledgements Conflicts of interest There are no conflicts of interest." @default.
- W2972085114 created "2019-09-12" @default.
- W2972085114 creator A5003824090 @default.
- W2972085114 creator A5036326609 @default.
- W2972085114 creator A5071119117 @default.
- W2972085114 creator A5080736326 @default.
- W2972085114 creator A5089833936 @default.
- W2972085114 date "2019-10-01" @default.
- W2972085114 modified "2023-09-27" @default.
- W2972085114 title "The influence of constraints on the efficient allocation of resources for HIV prevention" @default.
- W2972085114 cites W1975726953 @default.
- W2972085114 cites W1982166781 @default.
- W2972085114 cites W2053926904 @default.
- W2972085114 cites W2126173545 @default.
- W2972085114 cites W2161026355 @default.
- W2972085114 cites W2283606872 @default.
- W2972085114 cites W2468031570 @default.
- W2972085114 cites W2583221584 @default.
- W2972085114 cites W2588030008 @default.
- W2972085114 cites W2590684394 @default.
- W2972085114 cites W2596640152 @default.
- W2972085114 cites W2755623470 @default.
- W2972085114 cites W2768714363 @default.
- W2972085114 cites W2791566657 @default.
- W2972085114 cites W2795156755 @default.
- W2972085114 cites W2796552832 @default.
- W2972085114 cites W2892210399 @default.
- W2972085114 cites W2911217145 @default.
- W2972085114 cites W2971362777 @default.
- W2972085114 doi "https://doi.org/10.1097/qad.0000000000002267" @default.
- W2972085114 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31490214" @default.
- W2972085114 hasPublicationYear "2019" @default.
- W2972085114 type Work @default.
- W2972085114 sameAs 2972085114 @default.
- W2972085114 citedByCount "1" @default.
- W2972085114 countsByYear W29720851142019 @default.
- W2972085114 crossrefType "journal-article" @default.
- W2972085114 hasAuthorship W2972085114A5003824090 @default.
- W2972085114 hasAuthorship W2972085114A5036326609 @default.
- W2972085114 hasAuthorship W2972085114A5071119117 @default.
- W2972085114 hasAuthorship W2972085114A5080736326 @default.
- W2972085114 hasAuthorship W2972085114A5089833936 @default.
- W2972085114 hasBestOaLocation W29720851141 @default.
- W2972085114 hasConcept C100001284 @default.
- W2972085114 hasConcept C112930515 @default.
- W2972085114 hasConcept C118552586 @default.
- W2972085114 hasConcept C134560507 @default.
- W2972085114 hasConcept C144133560 @default.
- W2972085114 hasConcept C151730666 @default.
- W2972085114 hasConcept C160735492 @default.
- W2972085114 hasConcept C162118730 @default.
- W2972085114 hasConcept C162324750 @default.
- W2972085114 hasConcept C17744445 @default.
- W2972085114 hasConcept C199539241 @default.
- W2972085114 hasConcept C199728807 @default.
- W2972085114 hasConcept C27415008 @default.
- W2972085114 hasConcept C2779343474 @default.
- W2972085114 hasConcept C29202148 @default.
- W2972085114 hasConcept C34447519 @default.
- W2972085114 hasConcept C47344431 @default.
- W2972085114 hasConcept C50522688 @default.
- W2972085114 hasConcept C539667460 @default.
- W2972085114 hasConcept C71924100 @default.
- W2972085114 hasConcept C86803240 @default.
- W2972085114 hasConceptScore W2972085114C100001284 @default.
- W2972085114 hasConceptScore W2972085114C112930515 @default.
- W2972085114 hasConceptScore W2972085114C118552586 @default.
- W2972085114 hasConceptScore W2972085114C134560507 @default.
- W2972085114 hasConceptScore W2972085114C144133560 @default.
- W2972085114 hasConceptScore W2972085114C151730666 @default.
- W2972085114 hasConceptScore W2972085114C160735492 @default.
- W2972085114 hasConceptScore W2972085114C162118730 @default.
- W2972085114 hasConceptScore W2972085114C162324750 @default.
- W2972085114 hasConceptScore W2972085114C17744445 @default.
- W2972085114 hasConceptScore W2972085114C199539241 @default.
- W2972085114 hasConceptScore W2972085114C199728807 @default.
- W2972085114 hasConceptScore W2972085114C27415008 @default.
- W2972085114 hasConceptScore W2972085114C2779343474 @default.
- W2972085114 hasConceptScore W2972085114C29202148 @default.
- W2972085114 hasConceptScore W2972085114C34447519 @default.
- W2972085114 hasConceptScore W2972085114C47344431 @default.
- W2972085114 hasConceptScore W2972085114C50522688 @default.
- W2972085114 hasConceptScore W2972085114C539667460 @default.
- W2972085114 hasConceptScore W2972085114C71924100 @default.
- W2972085114 hasConceptScore W2972085114C86803240 @default.
- W2972085114 hasIssue "12" @default.
- W2972085114 hasLocation W29720851141 @default.
- W2972085114 hasLocation W29720851142 @default.
- W2972085114 hasLocation W29720851143 @default.
- W2972085114 hasOpenAccess W2972085114 @default.
- W2972085114 hasPrimaryLocation W29720851141 @default.
- W2972085114 hasRelatedWork W1516951606 @default.
- W2972085114 hasRelatedWork W159545594 @default.
- W2972085114 hasRelatedWork W2023116632 @default.
- W2972085114 hasRelatedWork W2101133918 @default.
- W2972085114 hasRelatedWork W2109441689 @default.
- W2972085114 hasRelatedWork W2131895686 @default.
- W2972085114 hasRelatedWork W2150516580 @default.