Matches in SemOpenAlex for { <https://semopenalex.org/work/W2972103482> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2972103482 abstract "Crowdsensing has found a broad range of applications (e.g., spectrum sensing, environmental monitoring) by leveraging the wisdom of a potentially large crowd of (i.e., mobile users). One important class of applications use the data collected from crowdsensing for data analytics via machine learning (e.g., for wireless indoor localization). To exploit the potential of crowdsensing for machine learning, it is beneficial for the crowdsensing requester to know and make use of the of worker’s data. In this paper, based on a general linear regression model of machine learning, we devise truthful quality-aware crowdsensing mechanisms for and effort elicitation, which incentivize workers to truthfully report their private worker to the requester, and make effort as desired by the requester. The truthful design of the mechanisms overcomes the differences of ground truths of workers’ tasks, and the coupling in the joint elicitation of workers’ quality, effort, and data. Under the mechanisms, we investigated the socially optimal and the requester’s optimal effort assignments, and analyze their performance. We show that the requester’s optimal assignment is determined by the virtual quality rather than the highest among workers, which depends on the worker’s and the quality’s distribution. Simulation results are provided which demonstrate the truthfulness of the mechanisms and the performance of the optimal effort assignments." @default.
- W2972103482 created "2019-09-12" @default.
- W2972103482 creator A5042081570 @default.
- W2972103482 creator A5050260558 @default.
- W2972103482 date "2019-06-01" @default.
- W2972103482 modified "2023-09-25" @default.
- W2972103482 title "Truthful Quality-Aware Data Crowdsensing for Machine Learning" @default.
- W2972103482 cites W1965392255 @default.
- W2972103482 cites W1970756365 @default.
- W2972103482 cites W2005406065 @default.
- W2972103482 cites W2058720102 @default.
- W2972103482 cites W2085773652 @default.
- W2972103482 cites W2127347346 @default.
- W2972103482 cites W2127963147 @default.
- W2972103482 cites W2247944537 @default.
- W2972103482 cites W2551296595 @default.
- W2972103482 cites W2554839354 @default.
- W2972103482 cites W2708237239 @default.
- W2972103482 cites W2732159262 @default.
- W2972103482 cites W2785787327 @default.
- W2972103482 cites W2889490873 @default.
- W2972103482 cites W2949654880 @default.
- W2972103482 cites W2963246254 @default.
- W2972103482 doi "https://doi.org/10.1109/sahcn.2019.8824888" @default.
- W2972103482 hasPublicationYear "2019" @default.
- W2972103482 type Work @default.
- W2972103482 sameAs 2972103482 @default.
- W2972103482 citedByCount "4" @default.
- W2972103482 countsByYear W29721034822020 @default.
- W2972103482 countsByYear W29721034822022 @default.
- W2972103482 countsByYear W29721034822023 @default.
- W2972103482 crossrefType "proceedings-article" @default.
- W2972103482 hasAuthorship W2972103482A5042081570 @default.
- W2972103482 hasAuthorship W2972103482A5050260558 @default.
- W2972103482 hasConcept C111472728 @default.
- W2972103482 hasConcept C119857082 @default.
- W2972103482 hasConcept C124101348 @default.
- W2972103482 hasConcept C127413603 @default.
- W2972103482 hasConcept C138885662 @default.
- W2972103482 hasConcept C154945302 @default.
- W2972103482 hasConcept C165696696 @default.
- W2972103482 hasConcept C176217482 @default.
- W2972103482 hasConcept C21547014 @default.
- W2972103482 hasConcept C24756922 @default.
- W2972103482 hasConcept C2522767166 @default.
- W2972103482 hasConcept C2779530757 @default.
- W2972103482 hasConcept C2780821482 @default.
- W2972103482 hasConcept C38652104 @default.
- W2972103482 hasConcept C41008148 @default.
- W2972103482 hasConceptScore W2972103482C111472728 @default.
- W2972103482 hasConceptScore W2972103482C119857082 @default.
- W2972103482 hasConceptScore W2972103482C124101348 @default.
- W2972103482 hasConceptScore W2972103482C127413603 @default.
- W2972103482 hasConceptScore W2972103482C138885662 @default.
- W2972103482 hasConceptScore W2972103482C154945302 @default.
- W2972103482 hasConceptScore W2972103482C165696696 @default.
- W2972103482 hasConceptScore W2972103482C176217482 @default.
- W2972103482 hasConceptScore W2972103482C21547014 @default.
- W2972103482 hasConceptScore W2972103482C24756922 @default.
- W2972103482 hasConceptScore W2972103482C2522767166 @default.
- W2972103482 hasConceptScore W2972103482C2779530757 @default.
- W2972103482 hasConceptScore W2972103482C2780821482 @default.
- W2972103482 hasConceptScore W2972103482C38652104 @default.
- W2972103482 hasConceptScore W2972103482C41008148 @default.
- W2972103482 hasLocation W29721034821 @default.
- W2972103482 hasOpenAccess W2972103482 @default.
- W2972103482 hasPrimaryLocation W29721034821 @default.
- W2972103482 hasRelatedWork W1981769178 @default.
- W2972103482 hasRelatedWork W2008053151 @default.
- W2972103482 hasRelatedWork W2160944939 @default.
- W2972103482 hasRelatedWork W2247686369 @default.
- W2972103482 hasRelatedWork W2470239497 @default.
- W2972103482 hasRelatedWork W2567683826 @default.
- W2972103482 hasRelatedWork W2592531451 @default.
- W2972103482 hasRelatedWork W2624729972 @default.
- W2972103482 hasRelatedWork W2756443057 @default.
- W2972103482 hasRelatedWork W2911701540 @default.
- W2972103482 hasRelatedWork W2921986787 @default.
- W2972103482 hasRelatedWork W2943381304 @default.
- W2972103482 hasRelatedWork W2944371455 @default.
- W2972103482 hasRelatedWork W2982938377 @default.
- W2972103482 hasRelatedWork W3006632686 @default.
- W2972103482 hasRelatedWork W3037112598 @default.
- W2972103482 hasRelatedWork W3049166317 @default.
- W2972103482 hasRelatedWork W3108479607 @default.
- W2972103482 hasRelatedWork W3134782699 @default.
- W2972103482 hasRelatedWork W3186772868 @default.
- W2972103482 isParatext "false" @default.
- W2972103482 isRetracted "false" @default.
- W2972103482 magId "2972103482" @default.
- W2972103482 workType "article" @default.