Matches in SemOpenAlex for { <https://semopenalex.org/work/W2972114037> ?p ?o ?g. }
- W2972114037 abstract "Document-level relation extraction is a complex human process that requires logical inference to extract relationships between named entities in text. Existing approaches use graph-based neural models with words as nodes and edges as relations between them, to encode relations across sentences. These models are node-based, i.e., they form pair representations based solely on the two target node representations. However, entity relations can be better expressed through unique edge representations formed as paths between nodes. We thus propose an edge-oriented graph neural model for document-level relation extraction. The model utilises different types of nodes and edges to create a document-level graph. An inference mechanism on the graph edges enables to learn intra- and inter-sentence relations using multi-instance learning internally. Experiments on two document-level biomedical datasets for chemical-disease and gene-disease associations show the usefulness of the proposed edge-oriented approach." @default.
- W2972114037 created "2019-09-12" @default.
- W2972114037 creator A5002276017 @default.
- W2972114037 creator A5002307731 @default.
- W2972114037 creator A5077976343 @default.
- W2972114037 date "2019-08-31" @default.
- W2972114037 modified "2023-09-25" @default.
- W2972114037 title "Connecting the Dots: Document-level Neural Relation Extraction with Edge-oriented Graphs" @default.
- W2972114037 cites W1493490255 @default.
- W2972114037 cites W1604644367 @default.
- W2972114037 cites W1750263989 @default.
- W2972114037 cites W1964189668 @default.
- W2972114037 cites W2064675550 @default.
- W2972114037 cites W2107598941 @default.
- W2972114037 cites W2131774270 @default.
- W2972114037 cites W2147286743 @default.
- W2972114037 cites W2250521169 @default.
- W2972114037 cites W2250539671 @default.
- W2972114037 cites W2251135946 @default.
- W2972114037 cites W2251622960 @default.
- W2972114037 cites W2334487059 @default.
- W2972114037 cites W2341742436 @default.
- W2972114037 cites W2346452181 @default.
- W2972114037 cites W2513378248 @default.
- W2972114037 cites W2515248967 @default.
- W2972114037 cites W2515462165 @default.
- W2972114037 cites W2527712604 @default.
- W2972114037 cites W2537679995 @default.
- W2972114037 cites W2574454672 @default.
- W2972114037 cites W2577666659 @default.
- W2972114037 cites W2604372572 @default.
- W2972114037 cites W2794309877 @default.
- W2972114037 cites W2798393196 @default.
- W2972114037 cites W2801290881 @default.
- W2972114037 cites W2889029893 @default.
- W2972114037 cites W2891417293 @default.
- W2972114037 cites W2892094955 @default.
- W2972114037 cites W2899771611 @default.
- W2972114037 cites W2917713791 @default.
- W2972114037 cites W2920198243 @default.
- W2972114037 cites W2935052563 @default.
- W2972114037 cites W2962859618 @default.
- W2972114037 cites W2963020213 @default.
- W2972114037 cites W2963021258 @default.
- W2972114037 cites W2963400328 @default.
- W2972114037 cites W2963454301 @default.
- W2972114037 cites W2963862093 @default.
- W2972114037 cites W2964121744 @default.
- W2972114037 cites W2964167098 @default.
- W2972114037 cites W2964193968 @default.
- W2972114037 cites W2964217331 @default.
- W2972114037 hasPublicationYear "2019" @default.
- W2972114037 type Work @default.
- W2972114037 sameAs 2972114037 @default.
- W2972114037 citedByCount "1" @default.
- W2972114037 countsByYear W29721140372021 @default.
- W2972114037 crossrefType "posted-content" @default.
- W2972114037 hasAuthorship W2972114037A5002276017 @default.
- W2972114037 hasAuthorship W2972114037A5002307731 @default.
- W2972114037 hasAuthorship W2972114037A5077976343 @default.
- W2972114037 hasConcept C104317684 @default.
- W2972114037 hasConcept C124101348 @default.
- W2972114037 hasConcept C127413603 @default.
- W2972114037 hasConcept C132525143 @default.
- W2972114037 hasConcept C153604712 @default.
- W2972114037 hasConcept C154945302 @default.
- W2972114037 hasConcept C162307627 @default.
- W2972114037 hasConcept C185592680 @default.
- W2972114037 hasConcept C195807954 @default.
- W2972114037 hasConcept C204321447 @default.
- W2972114037 hasConcept C25343380 @default.
- W2972114037 hasConcept C2776214188 @default.
- W2972114037 hasConcept C2777530160 @default.
- W2972114037 hasConcept C2987255567 @default.
- W2972114037 hasConcept C41008148 @default.
- W2972114037 hasConcept C50644808 @default.
- W2972114037 hasConcept C55493867 @default.
- W2972114037 hasConcept C62611344 @default.
- W2972114037 hasConcept C66746571 @default.
- W2972114037 hasConcept C66938386 @default.
- W2972114037 hasConcept C80444323 @default.
- W2972114037 hasConceptScore W2972114037C104317684 @default.
- W2972114037 hasConceptScore W2972114037C124101348 @default.
- W2972114037 hasConceptScore W2972114037C127413603 @default.
- W2972114037 hasConceptScore W2972114037C132525143 @default.
- W2972114037 hasConceptScore W2972114037C153604712 @default.
- W2972114037 hasConceptScore W2972114037C154945302 @default.
- W2972114037 hasConceptScore W2972114037C162307627 @default.
- W2972114037 hasConceptScore W2972114037C185592680 @default.
- W2972114037 hasConceptScore W2972114037C195807954 @default.
- W2972114037 hasConceptScore W2972114037C204321447 @default.
- W2972114037 hasConceptScore W2972114037C25343380 @default.
- W2972114037 hasConceptScore W2972114037C2776214188 @default.
- W2972114037 hasConceptScore W2972114037C2777530160 @default.
- W2972114037 hasConceptScore W2972114037C2987255567 @default.
- W2972114037 hasConceptScore W2972114037C41008148 @default.
- W2972114037 hasConceptScore W2972114037C50644808 @default.
- W2972114037 hasConceptScore W2972114037C55493867 @default.
- W2972114037 hasConceptScore W2972114037C62611344 @default.
- W2972114037 hasConceptScore W2972114037C66746571 @default.