Matches in SemOpenAlex for { <https://semopenalex.org/work/W2972140897> ?p ?o ?g. }
- W2972140897 endingPage "998" @default.
- W2972140897 startingPage "998" @default.
- W2972140897 abstract "A domination coloring of a graph G is a proper vertex coloring of G, such that each vertex of G dominates at least one color class (possibly its own class), and each color class is dominated by at least one vertex. The minimum number of colors among all domination colorings is called the domination chromatic number, denoted by χdd(G). In this paper, we study the complexity of the k-domination coloring problem by proving its NP-completeness for arbitrary graphs. We give basic results and properties of χdd(G), including the bounds and characterization results, and further research χdd(G) of some special classes of graphs, such as the split graphs, the generalized Petersen graphs, corona products, and edge corona products. Several results on graphs with χdd(G)=χ(G) are presented. Moreover, an application of domination colorings in social networks is proposed." @default.
- W2972140897 created "2019-09-12" @default.
- W2972140897 creator A5017820805 @default.
- W2972140897 creator A5034575617 @default.
- W2972140897 creator A5059434416 @default.
- W2972140897 creator A5075614381 @default.
- W2972140897 date "2022-03-21" @default.
- W2972140897 modified "2023-10-14" @default.
- W2972140897 title "Domination Coloring of Graphs" @default.
- W2972140897 cites W1566410171 @default.
- W2972140897 cites W1656795039 @default.
- W2972140897 cites W1988737472 @default.
- W2972140897 cites W1993060679 @default.
- W2972140897 cites W1994361334 @default.
- W2972140897 cites W2007033386 @default.
- W2972140897 cites W2015832089 @default.
- W2972140897 cites W2024275573 @default.
- W2972140897 cites W2036050270 @default.
- W2972140897 cites W2051183543 @default.
- W2972140897 cites W2068102400 @default.
- W2972140897 cites W2080357955 @default.
- W2972140897 cites W2736906274 @default.
- W2972140897 cites W2892652241 @default.
- W2972140897 cites W2978509545 @default.
- W2972140897 cites W3085670344 @default.
- W2972140897 cites W3094893547 @default.
- W2972140897 cites W3128546310 @default.
- W2972140897 cites W4245220234 @default.
- W2972140897 cites W4246450827 @default.
- W2972140897 cites W4247851660 @default.
- W2972140897 cites W772609349 @default.
- W2972140897 doi "https://doi.org/10.3390/math10060998" @default.
- W2972140897 hasPublicationYear "2022" @default.
- W2972140897 type Work @default.
- W2972140897 sameAs 2972140897 @default.
- W2972140897 citedByCount "3" @default.
- W2972140897 countsByYear W29721408972019 @default.
- W2972140897 countsByYear W29721408972022 @default.
- W2972140897 countsByYear W29721408972023 @default.
- W2972140897 crossrefType "journal-article" @default.
- W2972140897 hasAuthorship W2972140897A5017820805 @default.
- W2972140897 hasAuthorship W2972140897A5034575617 @default.
- W2972140897 hasAuthorship W2972140897A5059434416 @default.
- W2972140897 hasAuthorship W2972140897A5075614381 @default.
- W2972140897 hasBestOaLocation W29721408971 @default.
- W2972140897 hasConcept C102192266 @default.
- W2972140897 hasConcept C114614502 @default.
- W2972140897 hasConcept C118615104 @default.
- W2972140897 hasConcept C123809776 @default.
- W2972140897 hasConcept C132525143 @default.
- W2972140897 hasConcept C134306372 @default.
- W2972140897 hasConcept C149530733 @default.
- W2972140897 hasConcept C158319403 @default.
- W2972140897 hasConcept C160446614 @default.
- W2972140897 hasConcept C17231256 @default.
- W2972140897 hasConcept C196956537 @default.
- W2972140897 hasConcept C203776342 @default.
- W2972140897 hasConcept C21642379 @default.
- W2972140897 hasConcept C33923547 @default.
- W2972140897 hasConcept C51658606 @default.
- W2972140897 hasConcept C80899671 @default.
- W2972140897 hasConcept C83833204 @default.
- W2972140897 hasConceptScore W2972140897C102192266 @default.
- W2972140897 hasConceptScore W2972140897C114614502 @default.
- W2972140897 hasConceptScore W2972140897C118615104 @default.
- W2972140897 hasConceptScore W2972140897C123809776 @default.
- W2972140897 hasConceptScore W2972140897C132525143 @default.
- W2972140897 hasConceptScore W2972140897C134306372 @default.
- W2972140897 hasConceptScore W2972140897C149530733 @default.
- W2972140897 hasConceptScore W2972140897C158319403 @default.
- W2972140897 hasConceptScore W2972140897C160446614 @default.
- W2972140897 hasConceptScore W2972140897C17231256 @default.
- W2972140897 hasConceptScore W2972140897C196956537 @default.
- W2972140897 hasConceptScore W2972140897C203776342 @default.
- W2972140897 hasConceptScore W2972140897C21642379 @default.
- W2972140897 hasConceptScore W2972140897C33923547 @default.
- W2972140897 hasConceptScore W2972140897C51658606 @default.
- W2972140897 hasConceptScore W2972140897C80899671 @default.
- W2972140897 hasConceptScore W2972140897C83833204 @default.
- W2972140897 hasFunder F4320321001 @default.
- W2972140897 hasFunder F4320335777 @default.
- W2972140897 hasIssue "6" @default.
- W2972140897 hasLocation W29721408971 @default.
- W2972140897 hasLocation W29721408972 @default.
- W2972140897 hasOpenAccess W2972140897 @default.
- W2972140897 hasPrimaryLocation W29721408971 @default.
- W2972140897 hasRelatedWork W2003423887 @default.
- W2972140897 hasRelatedWork W2009043562 @default.
- W2972140897 hasRelatedWork W2038606831 @default.
- W2972140897 hasRelatedWork W2058979826 @default.
- W2972140897 hasRelatedWork W2069738272 @default.
- W2972140897 hasRelatedWork W2368433079 @default.
- W2972140897 hasRelatedWork W2375099373 @default.
- W2972140897 hasRelatedWork W2381829479 @default.
- W2972140897 hasRelatedWork W2392875187 @default.
- W2972140897 hasRelatedWork W4287598225 @default.
- W2972140897 hasVolume "10" @default.
- W2972140897 isParatext "false" @default.