Matches in SemOpenAlex for { <https://semopenalex.org/work/W2972156166> ?p ?o ?g. }
- W2972156166 endingPage "845" @default.
- W2972156166 startingPage "832" @default.
- W2972156166 abstract "This paper studies the problem of locating harmonic sources and estimating the distribution of harmonic voltages in unbalanced three-phase power distribution systems. We develop an approach for harmonic state estimation utilizing two types of measurements from smart meters and distribution-level phasor measurement units (DPMUs). It involves regression analysis for power flow calculation, prediction of demands using recurrent neural networks, and sparse Bayesian learning for state estimation. The proposed approach requires fewer DPMUs than nodes, making it more applicable to existing distribution grids. We show the effectiveness of the proposed estimator through extensive numerical simulations on an IEEE test feeder. We also investigate how the increased penetration of distributed energy resources could affect the performance of our state estimator." @default.
- W2972156166 created "2019-09-12" @default.
- W2972156166 creator A5016488397 @default.
- W2972156166 creator A5075613088 @default.
- W2972156166 creator A5079048464 @default.
- W2972156166 creator A5085642649 @default.
- W2972156166 date "2020-01-01" @default.
- W2972156166 modified "2023-10-16" @default.
- W2972156166 title "Bayesian Learning-Based Harmonic State Estimation in Distribution Systems With Smart Meter and DPMU Data" @default.
- W2972156166 cites W1974974828 @default.
- W2972156166 cites W1981594516 @default.
- W2972156166 cites W1995252632 @default.
- W2972156166 cites W1998309012 @default.
- W2972156166 cites W2004581312 @default.
- W2972156166 cites W2019066066 @default.
- W2972156166 cites W2030374597 @default.
- W2972156166 cites W2048951385 @default.
- W2972156166 cites W2080056491 @default.
- W2972156166 cites W2081532133 @default.
- W2972156166 cites W2101433095 @default.
- W2972156166 cites W2110101393 @default.
- W2972156166 cites W2114834373 @default.
- W2972156166 cites W2114899801 @default.
- W2972156166 cites W2117782830 @default.
- W2972156166 cites W2123458599 @default.
- W2972156166 cites W2126295444 @default.
- W2972156166 cites W2129441599 @default.
- W2972156166 cites W2129940798 @default.
- W2972156166 cites W2136848157 @default.
- W2972156166 cites W2145793388 @default.
- W2972156166 cites W2146323672 @default.
- W2972156166 cites W2154332973 @default.
- W2972156166 cites W2167550095 @default.
- W2972156166 cites W2465856325 @default.
- W2972156166 cites W2522896104 @default.
- W2972156166 cites W2550620756 @default.
- W2972156166 cites W2592468932 @default.
- W2972156166 cites W2613681884 @default.
- W2972156166 cites W2619848971 @default.
- W2972156166 cites W2624059558 @default.
- W2972156166 cites W2730269131 @default.
- W2972156166 cites W2736730693 @default.
- W2972156166 cites W2791437653 @default.
- W2972156166 cites W2883909241 @default.
- W2972156166 cites W2906630866 @default.
- W2972156166 cites W2908199533 @default.
- W2972156166 cites W2962264188 @default.
- W2972156166 cites W2962946572 @default.
- W2972156166 cites W2963590654 @default.
- W2972156166 cites W2987113785 @default.
- W2972156166 cites W4235618490 @default.
- W2972156166 cites W4236451413 @default.
- W2972156166 cites W4245007516 @default.
- W2972156166 doi "https://doi.org/10.1109/tsg.2019.2938733" @default.
- W2972156166 hasPublicationYear "2020" @default.
- W2972156166 type Work @default.
- W2972156166 sameAs 2972156166 @default.
- W2972156166 citedByCount "60" @default.
- W2972156166 countsByYear W29721561662020 @default.
- W2972156166 countsByYear W29721561662021 @default.
- W2972156166 countsByYear W29721561662022 @default.
- W2972156166 countsByYear W29721561662023 @default.
- W2972156166 crossrefType "journal-article" @default.
- W2972156166 hasAuthorship W2972156166A5016488397 @default.
- W2972156166 hasAuthorship W2972156166A5075613088 @default.
- W2972156166 hasAuthorship W2972156166A5079048464 @default.
- W2972156166 hasAuthorship W2972156166A5085642649 @default.
- W2972156166 hasConcept C10558101 @default.
- W2972156166 hasConcept C105795698 @default.
- W2972156166 hasConcept C108755667 @default.
- W2972156166 hasConcept C119599485 @default.
- W2972156166 hasConcept C121332964 @default.
- W2972156166 hasConcept C127413603 @default.
- W2972156166 hasConcept C127934551 @default.
- W2972156166 hasConcept C131770355 @default.
- W2972156166 hasConcept C151233233 @default.
- W2972156166 hasConcept C154945302 @default.
- W2972156166 hasConcept C163258240 @default.
- W2972156166 hasConcept C165801399 @default.
- W2972156166 hasConcept C176605952 @default.
- W2972156166 hasConcept C185429906 @default.
- W2972156166 hasConcept C188573790 @default.
- W2972156166 hasConcept C24326235 @default.
- W2972156166 hasConcept C2775924081 @default.
- W2972156166 hasConcept C2779510800 @default.
- W2972156166 hasConcept C33923547 @default.
- W2972156166 hasConcept C41008148 @default.
- W2972156166 hasConcept C47446073 @default.
- W2972156166 hasConcept C544738498 @default.
- W2972156166 hasConcept C62520636 @default.
- W2972156166 hasConcept C89227174 @default.
- W2972156166 hasConceptScore W2972156166C10558101 @default.
- W2972156166 hasConceptScore W2972156166C105795698 @default.
- W2972156166 hasConceptScore W2972156166C108755667 @default.
- W2972156166 hasConceptScore W2972156166C119599485 @default.
- W2972156166 hasConceptScore W2972156166C121332964 @default.
- W2972156166 hasConceptScore W2972156166C127413603 @default.
- W2972156166 hasConceptScore W2972156166C127934551 @default.