Matches in SemOpenAlex for { <https://semopenalex.org/work/W2972173145> ?p ?o ?g. }
- W2972173145 endingPage "1552" @default.
- W2972173145 startingPage "1534" @default.
- W2972173145 abstract "Abstract The auroral substorm has been extensively studied over the last six decades. However, our understanding of its driving mechanisms is still limited and so is our ability to accurately forecast its onset. In this study, we present the first deep learning‐based approach to predict the onset of a magnetic substorm, defined as the signature of the auroral electrojets in ground magnetometer measurements. Specifically, we use a time history of solar wind speed ( V x ), proton number density, and interplanetary magnetic field (IMF) components as inputs to forecast the occurrence probability of an onset over the next 1 hr. The model has been trained and tested on a data set derived from the SuperMAG list of magnetic substorm onsets and can correctly identify substorms ∼75% of the time. In contrast, an earlier prediction algorithm correctly identifies ∼21% of the substorms in the same data set. Our model's ability to forecast substorm onsets based on solar wind and IMF inputs prior to the actual onset time, and the trend observed in IMF B z prior to onset together suggest that a majority of the substorms may not be externally triggered by northward turnings of IMF. Furthermore, we find that IMF B z and V x have the most significant influence on model performance. Finally, principal component analysis shows a significant degree of overlap in the solar wind and IMF parameters prior to both substorm and nonsubstorm intervals, suggesting that solar wind and IMF alone may not be sufficient to forecast all substorms, and preconditioning of the magnetotail may be an important factor." @default.
- W2972173145 created "2019-09-12" @default.
- W2972173145 creator A5013214684 @default.
- W2972173145 creator A5031423467 @default.
- W2972173145 creator A5052115252 @default.
- W2972173145 creator A5058457875 @default.
- W2972173145 creator A5068601370 @default.
- W2972173145 date "2019-11-01" @default.
- W2972173145 modified "2023-10-15" @default.
- W2972173145 title "A Deep Learning‐Based Approach to Forecast the Onset of Magnetic Substorms" @default.
- W2972173145 cites W1498436455 @default.
- W2972173145 cites W1535486694 @default.
- W2972173145 cites W1628879890 @default.
- W2972173145 cites W1935706394 @default.
- W2972173145 cites W1967211874 @default.
- W2972173145 cites W1970133981 @default.
- W2972173145 cites W1974798730 @default.
- W2972173145 cites W1977065614 @default.
- W2972173145 cites W1979246404 @default.
- W2972173145 cites W1981457493 @default.
- W2972173145 cites W1981576225 @default.
- W2972173145 cites W1985669143 @default.
- W2972173145 cites W1988054515 @default.
- W2972173145 cites W2002457915 @default.
- W2972173145 cites W2004721480 @default.
- W2972173145 cites W2006055336 @default.
- W2972173145 cites W2009698519 @default.
- W2972173145 cites W2011301426 @default.
- W2972173145 cites W2012088981 @default.
- W2972173145 cites W2014674958 @default.
- W2972173145 cites W2014735079 @default.
- W2972173145 cites W2015285700 @default.
- W2972173145 cites W2018285354 @default.
- W2972173145 cites W2022768730 @default.
- W2972173145 cites W2023831893 @default.
- W2972173145 cites W2029860966 @default.
- W2972173145 cites W2030269466 @default.
- W2972173145 cites W2031189722 @default.
- W2972173145 cites W2032141052 @default.
- W2972173145 cites W2035717463 @default.
- W2972173145 cites W2036658599 @default.
- W2972173145 cites W2038941155 @default.
- W2972173145 cites W2042528363 @default.
- W2972173145 cites W2059888248 @default.
- W2972173145 cites W2060316513 @default.
- W2972173145 cites W2061385703 @default.
- W2972173145 cites W2061939373 @default.
- W2972173145 cites W2068713336 @default.
- W2972173145 cites W2071223026 @default.
- W2972173145 cites W2079534088 @default.
- W2972173145 cites W2093661103 @default.
- W2972173145 cites W2095133771 @default.
- W2972173145 cites W2103496339 @default.
- W2972173145 cites W2106620377 @default.
- W2972173145 cites W2111800584 @default.
- W2972173145 cites W2114341654 @default.
- W2972173145 cites W2117812871 @default.
- W2972173145 cites W2121307982 @default.
- W2972173145 cites W2123032077 @default.
- W2972173145 cites W2128148722 @default.
- W2972173145 cites W2128322001 @default.
- W2972173145 cites W2136908857 @default.
- W2972173145 cites W2137036164 @default.
- W2972173145 cites W2137983211 @default.
- W2972173145 cites W2138978918 @default.
- W2972173145 cites W2141644617 @default.
- W2972173145 cites W2151296816 @default.
- W2972173145 cites W2158217203 @default.
- W2972173145 cites W2164922882 @default.
- W2972173145 cites W2167182289 @default.
- W2972173145 cites W2194775991 @default.
- W2972173145 cites W2337185907 @default.
- W2972173145 cites W2342249984 @default.
- W2972173145 cites W2346154650 @default.
- W2972173145 cites W2551393996 @default.
- W2972173145 cites W2626303953 @default.
- W2972173145 cites W2892035503 @default.
- W2972173145 cites W2919115771 @default.
- W2972173145 cites W2945820605 @default.
- W2972173145 cites W4211182999 @default.
- W2972173145 cites W4246402729 @default.
- W2972173145 cites W4252130918 @default.
- W2972173145 doi "https://doi.org/10.1029/2019sw002251" @default.
- W2972173145 hasPublicationYear "2019" @default.
- W2972173145 type Work @default.
- W2972173145 sameAs 2972173145 @default.
- W2972173145 citedByCount "14" @default.
- W2972173145 countsByYear W29721731452020 @default.
- W2972173145 countsByYear W29721731452021 @default.
- W2972173145 countsByYear W29721731452022 @default.
- W2972173145 countsByYear W29721731452023 @default.
- W2972173145 crossrefType "journal-article" @default.
- W2972173145 hasAuthorship W2972173145A5013214684 @default.
- W2972173145 hasAuthorship W2972173145A5031423467 @default.
- W2972173145 hasAuthorship W2972173145A5052115252 @default.
- W2972173145 hasAuthorship W2972173145A5058457875 @default.
- W2972173145 hasAuthorship W2972173145A5068601370 @default.
- W2972173145 hasBestOaLocation W29721731451 @default.