Matches in SemOpenAlex for { <https://semopenalex.org/work/W2972180519> ?p ?o ?g. }
- W2972180519 abstract "After more than 80 years from the seminal work of Weizsacker and the liquid drop model of the atomic nucleus, deviations from experiments of mass models ($sim$ MeV) are orders of magnitude larger than experimental errors ($lesssim$ keV). Predicting the mass of atomic nuclei with precision is extremely challenging. This is due to the non--trivial many--body interplay of protons and neutrons in nuclei, and the complex nature of the nuclear strong force. Statistical theory of learning will be used to provide bounds to the prediction errors of model trained with a finite data set. These bounds are validated with neural network calculations, and compared with state of the art mass models. Therefore, it will be argued that the nuclear structure models investigating ground state properties explore a system on the limit of the knowledgeable, as defined by the statistical theory of learning." @default.
- W2972180519 created "2019-09-12" @default.
- W2972180519 creator A5029120317 @default.
- W2972180519 date "2020-12-14" @default.
- W2972180519 modified "2023-10-14" @default.
- W2972180519 title "Statistical learnability of nuclear masses" @default.
- W2972180519 cites W1761022139 @default.
- W2972180519 cites W2005378151 @default.
- W2972180519 cites W2005724945 @default.
- W2972180519 cites W2007059771 @default.
- W2972180519 cites W2012415715 @default.
- W2972180519 cites W2014887833 @default.
- W2972180519 cites W2017445558 @default.
- W2972180519 cites W2030976617 @default.
- W2972180519 cites W2036252282 @default.
- W2972180519 cites W2036798805 @default.
- W2972180519 cites W2040615655 @default.
- W2972180519 cites W2045313701 @default.
- W2972180519 cites W2046068097 @default.
- W2972180519 cites W2050946712 @default.
- W2972180519 cites W2057058473 @default.
- W2972180519 cites W2070902649 @default.
- W2972180519 cites W2072686831 @default.
- W2972180519 cites W2079100340 @default.
- W2972180519 cites W2084544490 @default.
- W2972180519 cites W2093529617 @default.
- W2972180519 cites W2094400046 @default.
- W2972180519 cites W2106491486 @default.
- W2972180519 cites W2111306697 @default.
- W2972180519 cites W2116015765 @default.
- W2972180519 cites W2119632933 @default.
- W2972180519 cites W2122203937 @default.
- W2972180519 cites W2149298154 @default.
- W2972180519 cites W2156909104 @default.
- W2972180519 cites W2244684221 @default.
- W2972180519 cites W2485782400 @default.
- W2972180519 cites W2609825742 @default.
- W2972180519 cites W2783931264 @default.
- W2972180519 cites W2787894218 @default.
- W2972180519 cites W2792884460 @default.
- W2972180519 cites W2804950444 @default.
- W2972180519 cites W2915181819 @default.
- W2972180519 cites W2949798967 @default.
- W2972180519 cites W2964371134 @default.
- W2972180519 cites W2968439436 @default.
- W2972180519 cites W2998313242 @default.
- W2972180519 cites W3030411682 @default.
- W2972180519 cites W3098470619 @default.
- W2972180519 cites W3098669482 @default.
- W2972180519 cites W3106517712 @default.
- W2972180519 cites W4238284510 @default.
- W2972180519 cites W4238893454 @default.
- W2972180519 cites W4252305909 @default.
- W2972180519 cites W4299580424 @default.
- W2972180519 doi "https://doi.org/10.1103/physrevresearch.2.043363" @default.
- W2972180519 hasPublicationYear "2020" @default.
- W2972180519 type Work @default.
- W2972180519 sameAs 2972180519 @default.
- W2972180519 citedByCount "4" @default.
- W2972180519 countsByYear W29721805192022 @default.
- W2972180519 countsByYear W29721805192023 @default.
- W2972180519 crossrefType "journal-article" @default.
- W2972180519 hasAuthorship W2972180519A5029120317 @default.
- W2972180519 hasBestOaLocation W29721805191 @default.
- W2972180519 hasConcept C109214941 @default.
- W2972180519 hasConcept C121332964 @default.
- W2972180519 hasConcept C121864883 @default.
- W2972180519 hasConcept C12294094 @default.
- W2972180519 hasConcept C127774322 @default.
- W2972180519 hasConcept C134306372 @default.
- W2972180519 hasConcept C151201525 @default.
- W2972180519 hasConcept C152568617 @default.
- W2972180519 hasConcept C154945302 @default.
- W2972180519 hasConcept C15580451 @default.
- W2972180519 hasConcept C177264268 @default.
- W2972180519 hasConcept C177905867 @default.
- W2972180519 hasConcept C185544564 @default.
- W2972180519 hasConcept C199360897 @default.
- W2972180519 hasConcept C2777723229 @default.
- W2972180519 hasConcept C33923547 @default.
- W2972180519 hasConcept C41008148 @default.
- W2972180519 hasConcept C67327403 @default.
- W2972180519 hasConcept C83727373 @default.
- W2972180519 hasConceptScore W2972180519C109214941 @default.
- W2972180519 hasConceptScore W2972180519C121332964 @default.
- W2972180519 hasConceptScore W2972180519C121864883 @default.
- W2972180519 hasConceptScore W2972180519C12294094 @default.
- W2972180519 hasConceptScore W2972180519C127774322 @default.
- W2972180519 hasConceptScore W2972180519C134306372 @default.
- W2972180519 hasConceptScore W2972180519C151201525 @default.
- W2972180519 hasConceptScore W2972180519C152568617 @default.
- W2972180519 hasConceptScore W2972180519C154945302 @default.
- W2972180519 hasConceptScore W2972180519C15580451 @default.
- W2972180519 hasConceptScore W2972180519C177264268 @default.
- W2972180519 hasConceptScore W2972180519C177905867 @default.
- W2972180519 hasConceptScore W2972180519C185544564 @default.
- W2972180519 hasConceptScore W2972180519C199360897 @default.
- W2972180519 hasConceptScore W2972180519C2777723229 @default.
- W2972180519 hasConceptScore W2972180519C33923547 @default.
- W2972180519 hasConceptScore W2972180519C41008148 @default.