Matches in SemOpenAlex for { <https://semopenalex.org/work/W2972185266> ?p ?o ?g. }
- W2972185266 abstract "We propose a dynamic filtering strategy with large sampling field for ConvNets (LS-DFN), where the position-specific kernels learn from not only the identical position but also multiple sampled neighbor regions. During sampling, residual learning is introduced to ease training and an attention mechanism is applied to fuse features from different samples. Such multiple samples enlarge the kernels' receptive fields significantly without requiring more parameters. While LS-DFN inherits the advantages of DFN, namely avoiding feature map blurring by position-wise kernels while keeping translation invariance, it also efficiently alleviates the overfitting issue caused by much more parameters than normal CNNs. Our model is efficient and can be trained end-to-end via standard back-propagation. We demonstrate the merits of our LS-DFN on both sparse and dense prediction tasks involving object detection, semantic segmentation, and flow estimation. Our results show LS-DFN enjoys stronger recognition abilities in object detection and semantic segmentation tasks on VOC benchmark and sharper responses in flow estimation on FlyingChairs dataset compared to strong baselines." @default.
- W2972185266 created "2019-09-12" @default.
- W2972185266 creator A5024401174 @default.
- W2972185266 creator A5028878390 @default.
- W2972185266 creator A5031986083 @default.
- W2972185266 creator A5062422693 @default.
- W2972185266 creator A5064508233 @default.
- W2972185266 date "2018-03-20" @default.
- W2972185266 modified "2023-10-17" @default.
- W2972185266 title "Dynamic Filtering with Large Sampling Field for ConvNets" @default.
- W2972185266 cites W1484210532 @default.
- W2972185266 cites W1514535095 @default.
- W2972185266 cites W1536680647 @default.
- W2972185266 cites W1686810756 @default.
- W2972185266 cites W1903029394 @default.
- W2972185266 cites W1951289974 @default.
- W2972185266 cites W2031489346 @default.
- W2972185266 cites W2097117768 @default.
- W2972185266 cites W2113221323 @default.
- W2972185266 cites W2116435618 @default.
- W2972185266 cites W2163605009 @default.
- W2972185266 cites W2172806452 @default.
- W2972185266 cites W2194775991 @default.
- W2972185266 cites W2279034837 @default.
- W2972185266 cites W2317851288 @default.
- W2972185266 cites W2341497066 @default.
- W2972185266 cites W2407521645 @default.
- W2972185266 cites W2412782625 @default.
- W2972185266 cites W2414711238 @default.
- W2972185266 cites W2470475590 @default.
- W2972185266 cites W2510318047 @default.
- W2972185266 cites W2556967412 @default.
- W2972185266 cites W2609476118 @default.
- W2972185266 cites W2612445135 @default.
- W2972185266 cites W2613718673 @default.
- W2972185266 cites W2747768235 @default.
- W2972185266 cites W2949259132 @default.
- W2972185266 cites W2949533892 @default.
- W2972185266 cites W2950477723 @default.
- W2972185266 cites W2950937274 @default.
- W2972185266 cites W2953296820 @default.
- W2972185266 cites W2963068995 @default.
- W2972185266 cites W2963782415 @default.
- W2972185266 cites W2963917086 @default.
- W2972185266 cites W764651262 @default.
- W2972185266 doi "https://doi.org/10.48550/arxiv.1803.07624" @default.
- W2972185266 hasPublicationYear "2018" @default.
- W2972185266 type Work @default.
- W2972185266 sameAs 2972185266 @default.
- W2972185266 citedByCount "2" @default.
- W2972185266 countsByYear W29721852662018 @default.
- W2972185266 countsByYear W29721852662019 @default.
- W2972185266 crossrefType "posted-content" @default.
- W2972185266 hasAuthorship W2972185266A5024401174 @default.
- W2972185266 hasAuthorship W2972185266A5028878390 @default.
- W2972185266 hasAuthorship W2972185266A5031986083 @default.
- W2972185266 hasAuthorship W2972185266A5062422693 @default.
- W2972185266 hasAuthorship W2972185266A5064508233 @default.
- W2972185266 hasBestOaLocation W29721852661 @default.
- W2972185266 hasConcept C10138342 @default.
- W2972185266 hasConcept C106131492 @default.
- W2972185266 hasConcept C11413529 @default.
- W2972185266 hasConcept C13280743 @default.
- W2972185266 hasConcept C138885662 @default.
- W2972185266 hasConcept C140779682 @default.
- W2972185266 hasConcept C153180895 @default.
- W2972185266 hasConcept C154945302 @default.
- W2972185266 hasConcept C155512373 @default.
- W2972185266 hasConcept C162324750 @default.
- W2972185266 hasConcept C185798385 @default.
- W2972185266 hasConcept C198082294 @default.
- W2972185266 hasConcept C202444582 @default.
- W2972185266 hasConcept C205649164 @default.
- W2972185266 hasConcept C22019652 @default.
- W2972185266 hasConcept C2776151529 @default.
- W2972185266 hasConcept C2776401178 @default.
- W2972185266 hasConcept C2781238097 @default.
- W2972185266 hasConcept C31972630 @default.
- W2972185266 hasConcept C33923547 @default.
- W2972185266 hasConcept C41008148 @default.
- W2972185266 hasConcept C41895202 @default.
- W2972185266 hasConcept C50644808 @default.
- W2972185266 hasConcept C89600930 @default.
- W2972185266 hasConcept C9652623 @default.
- W2972185266 hasConceptScore W2972185266C10138342 @default.
- W2972185266 hasConceptScore W2972185266C106131492 @default.
- W2972185266 hasConceptScore W2972185266C11413529 @default.
- W2972185266 hasConceptScore W2972185266C13280743 @default.
- W2972185266 hasConceptScore W2972185266C138885662 @default.
- W2972185266 hasConceptScore W2972185266C140779682 @default.
- W2972185266 hasConceptScore W2972185266C153180895 @default.
- W2972185266 hasConceptScore W2972185266C154945302 @default.
- W2972185266 hasConceptScore W2972185266C155512373 @default.
- W2972185266 hasConceptScore W2972185266C162324750 @default.
- W2972185266 hasConceptScore W2972185266C185798385 @default.
- W2972185266 hasConceptScore W2972185266C198082294 @default.
- W2972185266 hasConceptScore W2972185266C202444582 @default.
- W2972185266 hasConceptScore W2972185266C205649164 @default.
- W2972185266 hasConceptScore W2972185266C22019652 @default.
- W2972185266 hasConceptScore W2972185266C2776151529 @default.