Matches in SemOpenAlex for { <https://semopenalex.org/work/W2972187577> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2972187577 endingPage "4477" @default.
- W2972187577 startingPage "4474" @default.
- W2972187577 abstract "In this brief, we present an accurate and efficient machine learning (ML) approach which predicts variations in key electrical parameters using process variations (PVs) from ultrascaled gate-all-around (GAA) vertical FET (VFET) devices. The 3-D stochastic TCAD simulation is the most powerful tool for analyzing PVs, but for ultrascaled devices, the computation cost is too high because this method requires simultaneous analysis of various factors. The proposed ML approach is a new method which predicts the effects of the variability sources of ultrascaled devices. It also shows the same degree of accuracy, as well as improved efficiency compared to a 3-D stochastic TCAD simulation. An artificial neural network (ANN)-based ML algorithm can make multi-input-multi-output (MIMO) predictions very effectively and uses an internal algorithm structure that is improved relative to existing techniques to capture the effects of PVs accurately. This algorithm incurs approximately 16% of the computation cost by predicting the effects of process variability sources with less than 1% error compared to a 3-D stochastic TCAD simulation." @default.
- W2972187577 created "2019-09-12" @default.
- W2972187577 creator A5006345650 @default.
- W2972187577 creator A5010998941 @default.
- W2972187577 creator A5011216580 @default.
- W2972187577 creator A5028951762 @default.
- W2972187577 creator A5046944355 @default.
- W2972187577 date "2019-10-01" @default.
- W2972187577 modified "2023-10-10" @default.
- W2972187577 title "Prediction of Process Variation Effect for Ultrascaled GAA Vertical FET Devices Using a Machine Learning Approach" @default.
- W2972187577 cites W1666797088 @default.
- W2972187577 cites W1785028276 @default.
- W2972187577 cites W1911071908 @default.
- W2972187577 cites W2025338205 @default.
- W2972187577 cites W2037839309 @default.
- W2972187577 cites W2063006450 @default.
- W2972187577 cites W2106607114 @default.
- W2972187577 cites W2110282236 @default.
- W2972187577 cites W2245359636 @default.
- W2972187577 cites W2527434946 @default.
- W2972187577 cites W2625049244 @default.
- W2972187577 cites W2744406216 @default.
- W2972187577 cites W2913514770 @default.
- W2972187577 doi "https://doi.org/10.1109/ted.2019.2937786" @default.
- W2972187577 hasPublicationYear "2019" @default.
- W2972187577 type Work @default.
- W2972187577 sameAs 2972187577 @default.
- W2972187577 citedByCount "31" @default.
- W2972187577 countsByYear W29721875772020 @default.
- W2972187577 countsByYear W29721875772021 @default.
- W2972187577 countsByYear W29721875772022 @default.
- W2972187577 countsByYear W29721875772023 @default.
- W2972187577 crossrefType "journal-article" @default.
- W2972187577 hasAuthorship W2972187577A5006345650 @default.
- W2972187577 hasAuthorship W2972187577A5010998941 @default.
- W2972187577 hasAuthorship W2972187577A5011216580 @default.
- W2972187577 hasAuthorship W2972187577A5028951762 @default.
- W2972187577 hasAuthorship W2972187577A5046944355 @default.
- W2972187577 hasConcept C105795698 @default.
- W2972187577 hasConcept C111919701 @default.
- W2972187577 hasConcept C11413529 @default.
- W2972187577 hasConcept C119857082 @default.
- W2972187577 hasConcept C127413603 @default.
- W2972187577 hasConcept C24326235 @default.
- W2972187577 hasConcept C2780971903 @default.
- W2972187577 hasConcept C33923547 @default.
- W2972187577 hasConcept C41008148 @default.
- W2972187577 hasConcept C45374587 @default.
- W2972187577 hasConcept C50644808 @default.
- W2972187577 hasConcept C8272713 @default.
- W2972187577 hasConcept C93389723 @default.
- W2972187577 hasConcept C98045186 @default.
- W2972187577 hasConceptScore W2972187577C105795698 @default.
- W2972187577 hasConceptScore W2972187577C111919701 @default.
- W2972187577 hasConceptScore W2972187577C11413529 @default.
- W2972187577 hasConceptScore W2972187577C119857082 @default.
- W2972187577 hasConceptScore W2972187577C127413603 @default.
- W2972187577 hasConceptScore W2972187577C24326235 @default.
- W2972187577 hasConceptScore W2972187577C2780971903 @default.
- W2972187577 hasConceptScore W2972187577C33923547 @default.
- W2972187577 hasConceptScore W2972187577C41008148 @default.
- W2972187577 hasConceptScore W2972187577C45374587 @default.
- W2972187577 hasConceptScore W2972187577C50644808 @default.
- W2972187577 hasConceptScore W2972187577C8272713 @default.
- W2972187577 hasConceptScore W2972187577C93389723 @default.
- W2972187577 hasConceptScore W2972187577C98045186 @default.
- W2972187577 hasIssue "10" @default.
- W2972187577 hasLocation W29721875771 @default.
- W2972187577 hasOpenAccess W2972187577 @default.
- W2972187577 hasPrimaryLocation W29721875771 @default.
- W2972187577 hasRelatedWork W2026576019 @default.
- W2972187577 hasRelatedWork W2085447613 @default.
- W2972187577 hasRelatedWork W2116778801 @default.
- W2972187577 hasRelatedWork W2123397069 @default.
- W2972187577 hasRelatedWork W2165236039 @default.
- W2972187577 hasRelatedWork W2294708870 @default.
- W2972187577 hasRelatedWork W2617032002 @default.
- W2972187577 hasRelatedWork W2770413419 @default.
- W2972187577 hasRelatedWork W2800155864 @default.
- W2972187577 hasRelatedWork W2955267291 @default.
- W2972187577 hasVolume "66" @default.
- W2972187577 isParatext "false" @default.
- W2972187577 isRetracted "false" @default.
- W2972187577 magId "2972187577" @default.
- W2972187577 workType "article" @default.