Matches in SemOpenAlex for { <https://semopenalex.org/work/W2972228381> ?p ?o ?g. }
- W2972228381 endingPage "2188" @default.
- W2972228381 startingPage "2181" @default.
- W2972228381 abstract "Quantum algorithms have been developed for efficiently solving linear algebra tasks. However, they generally require deep circuits and hence universal fault-tolerant quantum computers. In this work, we propose variational algorithms for linear algebra tasks that are compatible with noisy intermediate-scale quantum devices. We show that the solutions of linear systems of equations and matrix–vector multiplications can be translated as the ground states of the constructed Hamiltonians. Based on the variational quantum algorithms, we introduce Hamiltonian morphing together with an adaptive ansätz for efficiently finding the ground state, and show the solution verification. Our algorithms are especially suitable for linear algebra problems with sparse matrices, and have wide applications in machine learning and optimisation problems. The algorithm for matrix multiplications can be also used for Hamiltonian simulation and open system simulation. We evaluate the cost and effectiveness of our algorithm through numerical simulations for solving linear systems of equations. We implement the algorithm on the IBM quantum cloud device with a high solution fidelity of 99.95%." @default.
- W2972228381 created "2019-09-12" @default.
- W2972228381 creator A5012132706 @default.
- W2972228381 creator A5044233223 @default.
- W2972228381 creator A5060002817 @default.
- W2972228381 creator A5072679879 @default.
- W2972228381 creator A5082360196 @default.
- W2972228381 creator A5090412627 @default.
- W2972228381 date "2021-11-01" @default.
- W2972228381 modified "2023-10-05" @default.
- W2972228381 title "Variational algorithms for linear algebra" @default.
- W2972228381 cites W1492999010 @default.
- W2972228381 cites W1988369744 @default.
- W2972228381 cites W2027780909 @default.
- W2972228381 cites W2041506125 @default.
- W2972228381 cites W2052891002 @default.
- W2972228381 cites W2103956991 @default.
- W2972228381 cites W2104399080 @default.
- W2972228381 cites W2161685427 @default.
- W2972228381 cites W2254754114 @default.
- W2972228381 cites W2257937122 @default.
- W2972228381 cites W2297918601 @default.
- W2972228381 cites W2559394418 @default.
- W2972228381 cites W2562526363 @default.
- W2972228381 cites W2564229214 @default.
- W2972228381 cites W2592769978 @default.
- W2972228381 cites W2607911764 @default.
- W2972228381 cites W2755255888 @default.
- W2972228381 cites W2760696651 @default.
- W2972228381 cites W2761673598 @default.
- W2972228381 cites W2790388700 @default.
- W2972228381 cites W2794444783 @default.
- W2972228381 cites W2798434869 @default.
- W2972228381 cites W2798945316 @default.
- W2972228381 cites W2808972567 @default.
- W2972228381 cites W2883180004 @default.
- W2972228381 cites W2885253165 @default.
- W2972228381 cites W2888094667 @default.
- W2972228381 cites W2889126882 @default.
- W2972228381 cites W2905003072 @default.
- W2972228381 cites W2942903016 @default.
- W2972228381 cites W2944122420 @default.
- W2972228381 cites W2949453985 @default.
- W2972228381 cites W2954369586 @default.
- W2972228381 cites W2963198496 @default.
- W2972228381 cites W2972223037 @default.
- W2972228381 cites W3033062516 @default.
- W2972228381 cites W3039469968 @default.
- W2972228381 cites W3099200606 @default.
- W2972228381 cites W3101678819 @default.
- W2972228381 cites W3101933006 @default.
- W2972228381 cites W3104413728 @default.
- W2972228381 cites W3106349779 @default.
- W2972228381 cites W3134596638 @default.
- W2972228381 cites W3134863278 @default.
- W2972228381 cites W3172206116 @default.
- W2972228381 cites W649366798 @default.
- W2972228381 doi "https://doi.org/10.1016/j.scib.2021.06.023" @default.
- W2972228381 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36654109" @default.
- W2972228381 hasPublicationYear "2021" @default.
- W2972228381 type Work @default.
- W2972228381 sameAs 2972228381 @default.
- W2972228381 citedByCount "70" @default.
- W2972228381 countsByYear W29722283812019 @default.
- W2972228381 countsByYear W29722283812020 @default.
- W2972228381 countsByYear W29722283812021 @default.
- W2972228381 countsByYear W29722283812022 @default.
- W2972228381 countsByYear W29722283812023 @default.
- W2972228381 crossrefType "journal-article" @default.
- W2972228381 hasAuthorship W2972228381A5012132706 @default.
- W2972228381 hasAuthorship W2972228381A5044233223 @default.
- W2972228381 hasAuthorship W2972228381A5060002817 @default.
- W2972228381 hasAuthorship W2972228381A5072679879 @default.
- W2972228381 hasAuthorship W2972228381A5082360196 @default.
- W2972228381 hasAuthorship W2972228381A5090412627 @default.
- W2972228381 hasBestOaLocation W29722283811 @default.
- W2972228381 hasConcept C11413529 @default.
- W2972228381 hasConcept C121332964 @default.
- W2972228381 hasConcept C126255220 @default.
- W2972228381 hasConcept C130787639 @default.
- W2972228381 hasConcept C134306372 @default.
- W2972228381 hasConcept C136119220 @default.
- W2972228381 hasConcept C137019171 @default.
- W2972228381 hasConcept C139352143 @default.
- W2972228381 hasConcept C163834973 @default.
- W2972228381 hasConcept C17349429 @default.
- W2972228381 hasConcept C202444582 @default.
- W2972228381 hasConcept C2524010 @default.
- W2972228381 hasConcept C28826006 @default.
- W2972228381 hasConcept C33923547 @default.
- W2972228381 hasConcept C41008148 @default.
- W2972228381 hasConcept C58053490 @default.
- W2972228381 hasConcept C62520636 @default.
- W2972228381 hasConcept C6802819 @default.
- W2972228381 hasConcept C84114770 @default.
- W2972228381 hasConceptScore W2972228381C11413529 @default.
- W2972228381 hasConceptScore W2972228381C121332964 @default.
- W2972228381 hasConceptScore W2972228381C126255220 @default.