Matches in SemOpenAlex for { <https://semopenalex.org/work/W2972231969> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2972231969 endingPage "708" @default.
- W2972231969 startingPage "699" @default.
- W2972231969 abstract "Over the next years, it is expected that machine learning will be widely implemented within fields in the construction context, such as construction planning. As construction projects tend to be influenced by interrelated issues resulting in cost and/or time overruns and lower performance, it has been continuously attempted to develop predictive planning methods and tools, in order to mitigate such issues. This study aims at investigating possible applications of machine learning for construction planning, noting their impact on project performance, and finally commenting critically on the issues of responsibility in action-taking, accountability in decisionmaking, and the still crucial need for human reasoning. Methodologically, a literature review on machine learning applications in construction project planning is carried out, and then two particular implementation cases are selected for a more in-depth analysis. The first case draws on a productivity survey of construction projects in Sweden, where the relative data is analysed to find the most influential factors behind project performance; then, statistical correlation is used to find the features that are strongly correlated with four performance indicators (cost variance, time variance, and client- and contractor satisfaction), and a supervised machine learning analysis is done to develop a model for predicting project cost, time and satisfaction. The second case elaborates on the appraisal of constructability of civil engineering projects through technical project risk analysis; the model utilizes both unsupervised machine learning for the understanding and pre-processing of data, and supervised machine learning for the development of the predictive system. Following the above analysis, it is argued that there is a need for human reasoning in construction planning, even more so after the introduction of machine learning. It is not enough to include human aspects in the machine learning modelling; it is also crucial to strengthen qualified reasoning in the decision-making for construction project planning and being responsible in action-taking and accountable in decision-making." @default.
- W2972231969 created "2019-09-12" @default.
- W2972231969 creator A5010919390 @default.
- W2972231969 creator A5059667507 @default.
- W2972231969 creator A5091090789 @default.
- W2972231969 date "2019-01-01" @default.
- W2972231969 modified "2023-09-27" @default.
- W2972231969 title "Construction planning with machine learning" @default.
- W2972231969 cites W1570277647 @default.
- W2972231969 cites W1570448133 @default.
- W2972231969 cites W2004242398 @default.
- W2972231969 cites W2044076868 @default.
- W2972231969 cites W2072459226 @default.
- W2972231969 cites W2094276670 @default.
- W2972231969 cites W2124956521 @default.
- W2972231969 cites W2135730993 @default.
- W2972231969 cites W2490033382 @default.
- W2972231969 cites W2769766362 @default.
- W2972231969 cites W2801639086 @default.
- W2972231969 cites W2942549940 @default.
- W2972231969 cites W2945581454 @default.
- W2972231969 cites W2963929932 @default.
- W2972231969 cites W3147181238 @default.
- W2972231969 cites W604960715 @default.
- W2972231969 hasPublicationYear "2019" @default.
- W2972231969 type Work @default.
- W2972231969 sameAs 2972231969 @default.
- W2972231969 citedByCount "0" @default.
- W2972231969 crossrefType "journal-article" @default.
- W2972231969 hasAuthorship W2972231969A5010919390 @default.
- W2972231969 hasAuthorship W2972231969A5059667507 @default.
- W2972231969 hasAuthorship W2972231969A5091090789 @default.
- W2972231969 hasConcept C112930515 @default.
- W2972231969 hasConcept C119857082 @default.
- W2972231969 hasConcept C121955636 @default.
- W2972231969 hasConcept C127413603 @default.
- W2972231969 hasConcept C144133560 @default.
- W2972231969 hasConcept C151730666 @default.
- W2972231969 hasConcept C154945302 @default.
- W2972231969 hasConcept C195094911 @default.
- W2972231969 hasConcept C196083921 @default.
- W2972231969 hasConcept C201995342 @default.
- W2972231969 hasConcept C2779343474 @default.
- W2972231969 hasConcept C41008148 @default.
- W2972231969 hasConcept C42475967 @default.
- W2972231969 hasConcept C539667460 @default.
- W2972231969 hasConcept C56739046 @default.
- W2972231969 hasConcept C71924100 @default.
- W2972231969 hasConcept C86803240 @default.
- W2972231969 hasConcept C91649852 @default.
- W2972231969 hasConceptScore W2972231969C112930515 @default.
- W2972231969 hasConceptScore W2972231969C119857082 @default.
- W2972231969 hasConceptScore W2972231969C121955636 @default.
- W2972231969 hasConceptScore W2972231969C127413603 @default.
- W2972231969 hasConceptScore W2972231969C144133560 @default.
- W2972231969 hasConceptScore W2972231969C151730666 @default.
- W2972231969 hasConceptScore W2972231969C154945302 @default.
- W2972231969 hasConceptScore W2972231969C195094911 @default.
- W2972231969 hasConceptScore W2972231969C196083921 @default.
- W2972231969 hasConceptScore W2972231969C201995342 @default.
- W2972231969 hasConceptScore W2972231969C2779343474 @default.
- W2972231969 hasConceptScore W2972231969C41008148 @default.
- W2972231969 hasConceptScore W2972231969C42475967 @default.
- W2972231969 hasConceptScore W2972231969C539667460 @default.
- W2972231969 hasConceptScore W2972231969C56739046 @default.
- W2972231969 hasConceptScore W2972231969C71924100 @default.
- W2972231969 hasConceptScore W2972231969C86803240 @default.
- W2972231969 hasConceptScore W2972231969C91649852 @default.
- W2972231969 hasLocation W29722319691 @default.
- W2972231969 hasOpenAccess W2972231969 @default.
- W2972231969 hasPrimaryLocation W29722319691 @default.
- W2972231969 hasRelatedWork W110060454 @default.
- W2972231969 hasRelatedWork W136805203 @default.
- W2972231969 hasRelatedWork W1484317339 @default.
- W2972231969 hasRelatedWork W1729663376 @default.
- W2972231969 hasRelatedWork W1812912523 @default.
- W2972231969 hasRelatedWork W2032872148 @default.
- W2972231969 hasRelatedWork W2061481400 @default.
- W2972231969 hasRelatedWork W2093228609 @default.
- W2972231969 hasRelatedWork W2263589417 @default.
- W2972231969 hasRelatedWork W2340852719 @default.
- W2972231969 hasRelatedWork W2579444724 @default.
- W2972231969 hasRelatedWork W288364016 @default.
- W2972231969 hasRelatedWork W2947948014 @default.
- W2972231969 hasRelatedWork W2972394362 @default.
- W2972231969 hasRelatedWork W2991429970 @default.
- W2972231969 hasRelatedWork W3004210617 @default.
- W2972231969 hasRelatedWork W3094619455 @default.
- W2972231969 hasRelatedWork W3129239135 @default.
- W2972231969 hasRelatedWork W3204941740 @default.
- W2972231969 hasRelatedWork W814130304 @default.
- W2972231969 hasVolume "2019" @default.
- W2972231969 isParatext "false" @default.
- W2972231969 isRetracted "false" @default.
- W2972231969 magId "2972231969" @default.
- W2972231969 workType "article" @default.