Matches in SemOpenAlex for { <https://semopenalex.org/work/W2972241794> ?p ?o ?g. }
- W2972241794 abstract "Contextualized word embeddings such as ELMo and BERT provide a foundation for strong performance across a wide range of natural language processing tasks by pretraining on large corpora of unlabeled text. However, the applicability of this approach is unknown when the target domain varies substantially from the pretraining corpus. We are specifically interested in the scenario in which labeled data is available in only a canonical source domain such as newstext, and the target domain is distinct from both the labeled and pretraining texts. To address this scenario, we propose domain-adaptive fine-tuning, in which the contextualized embeddings are adapted by masked language modeling on text from the target domain. We test this approach on sequence labeling in two challenging domains: Early Modern English and Twitter. Both domains differ substantially from existing pretraining corpora, and domain-adaptive fine-tuning yields substantial improvements over strong BERT baselines, with particularly impressive results on out-of-vocabulary words. We conclude that domain-adaptive fine-tuning offers a simple and effective approach for the unsupervised adaptation of sequence labeling to difficult new domains." @default.
- W2972241794 created "2019-09-12" @default.
- W2972241794 creator A5047699861 @default.
- W2972241794 creator A5091822496 @default.
- W2972241794 date "2019-04-04" @default.
- W2972241794 modified "2023-09-24" @default.
- W2972241794 title "Unsupervised Domain Adaptation of Contextualized Embeddings for Sequence Labeling" @default.
- W2972241794 cites W1553878378 @default.
- W2972241794 cites W157541337 @default.
- W2972241794 cites W1632114991 @default.
- W2972241794 cites W1682403713 @default.
- W2972241794 cites W1731081199 @default.
- W2972241794 cites W2019096529 @default.
- W2972241794 cites W2056747920 @default.
- W2972241794 cites W2075517337 @default.
- W2972241794 cites W2101761627 @default.
- W2972241794 cites W2120708938 @default.
- W2972241794 cites W2132764451 @default.
- W2972241794 cites W2141034612 @default.
- W2972241794 cites W2144578941 @default.
- W2972241794 cites W2170973209 @default.
- W2972241794 cites W2502324996 @default.
- W2972241794 cites W2588986918 @default.
- W2972241794 cites W2604986524 @default.
- W2972241794 cites W2739748921 @default.
- W2972241794 cites W2742039423 @default.
- W2972241794 cites W2751528152 @default.
- W2972241794 cites W2757947833 @default.
- W2972241794 cites W2769358515 @default.
- W2972241794 cites W2803777992 @default.
- W2972241794 cites W2807256232 @default.
- W2972241794 cites W2890494294 @default.
- W2972241794 cites W2911489562 @default.
- W2972241794 cites W2911681509 @default.
- W2972241794 cites W2922551710 @default.
- W2972241794 cites W2929208326 @default.
- W2972241794 cites W2942203175 @default.
- W2972241794 cites W2949433733 @default.
- W2972241794 cites W2951714314 @default.
- W2972241794 cites W2962369866 @default.
- W2972241794 cites W2962702662 @default.
- W2972241794 cites W2962739339 @default.
- W2972241794 cites W2962755455 @default.
- W2972241794 cites W2963026768 @default.
- W2972241794 cites W2963261224 @default.
- W2972241794 cites W2963285936 @default.
- W2972241794 cites W2963341956 @default.
- W2972241794 cites W2963837895 @default.
- W2972241794 cites W2964352358 @default.
- W2972241794 cites W2970352191 @default.
- W2972241794 cites W2973154071 @default.
- W2972241794 cites W560371024 @default.
- W2972241794 cites W70524345 @default.
- W2972241794 cites W78502128 @default.
- W2972241794 doi "https://doi.org/10.48550/arxiv.1904.02817" @default.
- W2972241794 hasPublicationYear "2019" @default.
- W2972241794 type Work @default.
- W2972241794 sameAs 2972241794 @default.
- W2972241794 citedByCount "8" @default.
- W2972241794 countsByYear W29722417942019 @default.
- W2972241794 countsByYear W29722417942020 @default.
- W2972241794 countsByYear W29722417942021 @default.
- W2972241794 countsByYear W29722417942022 @default.
- W2972241794 countsByYear W29722417942023 @default.
- W2972241794 crossrefType "posted-content" @default.
- W2972241794 hasAuthorship W2972241794A5047699861 @default.
- W2972241794 hasAuthorship W2972241794A5091822496 @default.
- W2972241794 hasBestOaLocation W29722417941 @default.
- W2972241794 hasConcept C134306372 @default.
- W2972241794 hasConcept C137293760 @default.
- W2972241794 hasConcept C138885662 @default.
- W2972241794 hasConcept C139807058 @default.
- W2972241794 hasConcept C154945302 @default.
- W2972241794 hasConcept C15744967 @default.
- W2972241794 hasConcept C162324750 @default.
- W2972241794 hasConcept C169760540 @default.
- W2972241794 hasConcept C187736073 @default.
- W2972241794 hasConcept C204321447 @default.
- W2972241794 hasConcept C2776145971 @default.
- W2972241794 hasConcept C2776434776 @default.
- W2972241794 hasConcept C2777601683 @default.
- W2972241794 hasConcept C2778112365 @default.
- W2972241794 hasConcept C2780451532 @default.
- W2972241794 hasConcept C33923547 @default.
- W2972241794 hasConcept C35639132 @default.
- W2972241794 hasConcept C36503486 @default.
- W2972241794 hasConcept C41008148 @default.
- W2972241794 hasConcept C41895202 @default.
- W2972241794 hasConcept C54355233 @default.
- W2972241794 hasConcept C86803240 @default.
- W2972241794 hasConcept C90805587 @default.
- W2972241794 hasConcept C95623464 @default.
- W2972241794 hasConceptScore W2972241794C134306372 @default.
- W2972241794 hasConceptScore W2972241794C137293760 @default.
- W2972241794 hasConceptScore W2972241794C138885662 @default.
- W2972241794 hasConceptScore W2972241794C139807058 @default.
- W2972241794 hasConceptScore W2972241794C154945302 @default.
- W2972241794 hasConceptScore W2972241794C15744967 @default.
- W2972241794 hasConceptScore W2972241794C162324750 @default.
- W2972241794 hasConceptScore W2972241794C169760540 @default.