Matches in SemOpenAlex for { <https://semopenalex.org/work/W2972259344> ?p ?o ?g. }
- W2972259344 endingPage "113187" @default.
- W2972259344 startingPage "113187" @default.
- W2972259344 abstract "In the era of big data, a variety of factors (particularly meteorological factors) have been applied to PM2.5 concentration prediction, revealing a clear discrepancy in timescale. To capture the complicated multi-scale relationship with PM2.5-related factors, a novel multi-factor & multi-scale method is proposed for PM2.5 forecasting. Three major steps are taken: (1) multi-factor analysis, to select predictive factors via statistical tests; (2) multi-scale analysis, to extract scale-aligned components via multivariate empirical mode decomposition; and (3) PM2.5 prediction, including individual prediction at each timescale and ensemble prediction across different timescales. The empirical study focuses on the PM2.5 of Cangzhou, which is one of the most air-polluted cities in China, and indicates that the proposed multi-factor & multi-scale learning paradigms statistically outperform their corresponding original techniques (without multi-factor and multi-scale analysis), semi-improved variants (with either multi-factor or multi-scale analysis), and similar counterparts (with other multi-scale analyses) in terms of prediction accuracy." @default.
- W2972259344 created "2019-09-12" @default.
- W2972259344 creator A5005122056 @default.
- W2972259344 creator A5015210646 @default.
- W2972259344 creator A5035293475 @default.
- W2972259344 creator A5058492505 @default.
- W2972259344 creator A5084708538 @default.
- W2972259344 date "2019-12-01" @default.
- W2972259344 modified "2023-09-29" @default.
- W2972259344 title "A novel multi-factor & multi-scale method for PM2.5 concentration forecasting" @default.
- W2972259344 cites W1538856322 @default.
- W2972259344 cites W1973048907 @default.
- W2972259344 cites W1979919415 @default.
- W2972259344 cites W1985230583 @default.
- W2972259344 cites W1986224436 @default.
- W2972259344 cites W1996640396 @default.
- W2972259344 cites W2007221293 @default.
- W2972259344 cites W2018404189 @default.
- W2972259344 cites W2041178263 @default.
- W2972259344 cites W2043582954 @default.
- W2972259344 cites W2054806977 @default.
- W2972259344 cites W2076485554 @default.
- W2972259344 cites W2077664060 @default.
- W2972259344 cites W2111072639 @default.
- W2972259344 cites W2119362352 @default.
- W2972259344 cites W2120390927 @default.
- W2972259344 cites W2136848157 @default.
- W2972259344 cites W2147243899 @default.
- W2972259344 cites W2306169448 @default.
- W2972259344 cites W2331700789 @default.
- W2972259344 cites W2438470546 @default.
- W2972259344 cites W2460954196 @default.
- W2972259344 cites W2543678400 @default.
- W2972259344 cites W2553794864 @default.
- W2972259344 cites W2553839055 @default.
- W2972259344 cites W2566512888 @default.
- W2972259344 cites W2580112876 @default.
- W2972259344 cites W2590661630 @default.
- W2972259344 cites W2610454547 @default.
- W2972259344 cites W2735887728 @default.
- W2972259344 cites W2745393078 @default.
- W2972259344 cites W2751846330 @default.
- W2972259344 cites W2752187831 @default.
- W2972259344 cites W2754502201 @default.
- W2972259344 cites W2754663885 @default.
- W2972259344 cites W2760506659 @default.
- W2972259344 cites W2764126455 @default.
- W2972259344 cites W2767894694 @default.
- W2972259344 cites W2777889442 @default.
- W2972259344 cites W2789849108 @default.
- W2972259344 cites W2793167459 @default.
- W2972259344 cites W2793258900 @default.
- W2972259344 cites W2794210464 @default.
- W2972259344 cites W2794659547 @default.
- W2972259344 cites W2795470013 @default.
- W2972259344 cites W2804919585 @default.
- W2972259344 cites W2809533013 @default.
- W2972259344 cites W2812669263 @default.
- W2972259344 cites W2892162670 @default.
- W2972259344 cites W2905872298 @default.
- W2972259344 cites W2921254207 @default.
- W2972259344 cites W2944043120 @default.
- W2972259344 cites W4239510810 @default.
- W2972259344 cites W2123563890 @default.
- W2972259344 doi "https://doi.org/10.1016/j.envpol.2019.113187" @default.
- W2972259344 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31522003" @default.
- W2972259344 hasPublicationYear "2019" @default.
- W2972259344 type Work @default.
- W2972259344 sameAs 2972259344 @default.
- W2972259344 citedByCount "39" @default.
- W2972259344 countsByYear W29722593442020 @default.
- W2972259344 countsByYear W29722593442021 @default.
- W2972259344 countsByYear W29722593442022 @default.
- W2972259344 countsByYear W29722593442023 @default.
- W2972259344 crossrefType "journal-article" @default.
- W2972259344 hasAuthorship W2972259344A5005122056 @default.
- W2972259344 hasAuthorship W2972259344A5015210646 @default.
- W2972259344 hasAuthorship W2972259344A5035293475 @default.
- W2972259344 hasAuthorship W2972259344A5058492505 @default.
- W2972259344 hasAuthorship W2972259344A5084708538 @default.
- W2972259344 hasConcept C105795698 @default.
- W2972259344 hasConcept C10879293 @default.
- W2972259344 hasConcept C119857082 @default.
- W2972259344 hasConcept C121332964 @default.
- W2972259344 hasConcept C124101348 @default.
- W2972259344 hasConcept C144386022 @default.
- W2972259344 hasConcept C149782125 @default.
- W2972259344 hasConcept C161584116 @default.
- W2972259344 hasConcept C172790937 @default.
- W2972259344 hasConcept C199360897 @default.
- W2972259344 hasConcept C20154449 @default.
- W2972259344 hasConcept C205649164 @default.
- W2972259344 hasConcept C26405456 @default.
- W2972259344 hasConcept C2778755073 @default.
- W2972259344 hasConcept C2781039887 @default.
- W2972259344 hasConcept C33923547 @default.
- W2972259344 hasConcept C41008148 @default.
- W2972259344 hasConcept C58640448 @default.