Matches in SemOpenAlex for { <https://semopenalex.org/work/W2972313349> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2972313349 endingPage "1353" @default.
- W2972313349 startingPage "1353" @default.
- W2972313349 abstract "1353 Objectives: ackground Infectious pneumonia and primary lung cancer often show similar image findings. The clinical course and FDG PET/CT help in differentiation, but sometimes it is not enough for even experience nuclear medicine physician. Overdiagnosis may cause unnecessary invasive tests or surgery, and thus strict differentiation is required. Recently, texture analysis on PET imaging is applied for oncology studies. Texture features reflect the heterogeneity of tumor metabolism which could be helpful for differential diagnosis from inflammation disease. In this study, we investigated the performance of single and multiple parameters of texture analyses using support vector machine (SVM) for discriminating primary lung cancer from pneumonia from PET/CT images. Methods 18F-FDG PET/CT images of the latest consecutive 20 patients of non-small cell lung cancer (LC) and pneumonia (PN), respectively, were retrieved from our hospital database. All the LC patients were pathologically proven. We confirmed all the PN lesions had disappeared in the clinical course. Scanner was either a Siemens Biograph 64 PET-CT scanner or a Philips GEMINI TF-64 scanner. For each lesion, 3 delineation methods were applied: Nestle method (adaptive threshold method by Nestle et al, β=0.3), SUV2 method (VOIs with a fixed threshold of SUV≥2.0), and Liver3SD method (VOIs with threshold of SUV of the liver mean + 3 SD). In addition, background texture was computed from VOI in the normal lung, the liver and the muscle. The voxel intensities were resampled using 64 discrete values, between minimum and maximum SUVs (min-max) or between SUV 0 to 20 (SUV0-20). In addition to histogram analysis, 4 texture matrices (gray-level co-occurrence matrix (13 directions), gray-level run length matrix (13 directions), gray-level zone size matrix, and neighborhood gray-level difference matrix) were generated to calculate a total of 36 texture parameters. SUVmax, SUVmean, MTV, TLG were also measured. SVM with linear kernel was employed for machine learning. Single or multiple texture features were given to SVM to classify the image to lung cancer or pneumonia. Accuracy was estimated using leave-one-out validation. Image analysis was performed on Metavol. Texture features were computed using ‘ptexture’ on Python. Results When a single texture parameter was given to SVM, the accuracy was 40% to 75% (dissimilarity and LGRE reached 75%; SDhist, homogeneityGLCM, contrastGLCM, and LZHGE reached 70%). When the full set of 40 parameters of the lesion was given to SVM, the accuracy was degraded to 60% (min-max) to 65% (SUV0-20). When a lesion-and-reference combination (i.e., 80 parameters) was given to SVM, the accuracy was maximized to 82.5%, which was achieved by Liver3SD method and the liver texture. Finally, the entire texture matrix (240 parameters per patient) was given to SVM, and the accuracy was 40% to 67.5%. Conclusion Support vector machine with multiple texture features on FDG PET-CT discriminated lung cancer from infectious pneumonia with accuracy of 82.5%. The machine learning system may provide additional information to physicians in interpreting images, although parameter selection needs to be optimized." @default.
- W2972313349 created "2019-09-19" @default.
- W2972313349 creator A5018101834 @default.
- W2972313349 creator A5021226320 @default.
- W2972313349 creator A5046528941 @default.
- W2972313349 creator A5049074445 @default.
- W2972313349 creator A5053518541 @default.
- W2972313349 creator A5063173173 @default.
- W2972313349 creator A5065419096 @default.
- W2972313349 date "2018-05-01" @default.
- W2972313349 modified "2023-09-24" @default.
- W2972313349 title "A radiomics approach to discriminate lung cancer from pneumonia on FDG PET-CT" @default.
- W2972313349 hasPublicationYear "2018" @default.
- W2972313349 type Work @default.
- W2972313349 sameAs 2972313349 @default.
- W2972313349 citedByCount "0" @default.
- W2972313349 crossrefType "journal-article" @default.
- W2972313349 hasAuthorship W2972313349A5018101834 @default.
- W2972313349 hasAuthorship W2972313349A5021226320 @default.
- W2972313349 hasAuthorship W2972313349A5046528941 @default.
- W2972313349 hasAuthorship W2972313349A5049074445 @default.
- W2972313349 hasAuthorship W2972313349A5053518541 @default.
- W2972313349 hasAuthorship W2972313349A5063173173 @default.
- W2972313349 hasAuthorship W2972313349A5065419096 @default.
- W2972313349 hasConcept C126322002 @default.
- W2972313349 hasConcept C126838900 @default.
- W2972313349 hasConcept C127077266 @default.
- W2972313349 hasConcept C142724271 @default.
- W2972313349 hasConcept C2775842073 @default.
- W2972313349 hasConcept C2776256026 @default.
- W2972313349 hasConcept C2777714996 @default.
- W2972313349 hasConcept C2777914695 @default.
- W2972313349 hasConcept C2778559731 @default.
- W2972313349 hasConcept C2989005 @default.
- W2972313349 hasConcept C71924100 @default.
- W2972313349 hasConceptScore W2972313349C126322002 @default.
- W2972313349 hasConceptScore W2972313349C126838900 @default.
- W2972313349 hasConceptScore W2972313349C127077266 @default.
- W2972313349 hasConceptScore W2972313349C142724271 @default.
- W2972313349 hasConceptScore W2972313349C2775842073 @default.
- W2972313349 hasConceptScore W2972313349C2776256026 @default.
- W2972313349 hasConceptScore W2972313349C2777714996 @default.
- W2972313349 hasConceptScore W2972313349C2777914695 @default.
- W2972313349 hasConceptScore W2972313349C2778559731 @default.
- W2972313349 hasConceptScore W2972313349C2989005 @default.
- W2972313349 hasConceptScore W2972313349C71924100 @default.
- W2972313349 hasLocation W29723133491 @default.
- W2972313349 hasOpenAccess W2972313349 @default.
- W2972313349 hasPrimaryLocation W29723133491 @default.
- W2972313349 hasRelatedWork W1005978088 @default.
- W2972313349 hasRelatedWork W1019634379 @default.
- W2972313349 hasRelatedWork W1038274942 @default.
- W2972313349 hasRelatedWork W157213454 @default.
- W2972313349 hasRelatedWork W1645341736 @default.
- W2972313349 hasRelatedWork W1994163152 @default.
- W2972313349 hasRelatedWork W2042085248 @default.
- W2972313349 hasRelatedWork W2059939049 @default.
- W2972313349 hasRelatedWork W2088616799 @default.
- W2972313349 hasRelatedWork W2099698084 @default.
- W2972313349 hasRelatedWork W2103851997 @default.
- W2972313349 hasRelatedWork W2135285836 @default.
- W2972313349 hasRelatedWork W2587303583 @default.
- W2972313349 hasRelatedWork W2773257842 @default.
- W2972313349 hasRelatedWork W2982760365 @default.
- W2972313349 hasRelatedWork W2996500840 @default.
- W2972313349 hasRelatedWork W3016078995 @default.
- W2972313349 hasRelatedWork W3091185828 @default.
- W2972313349 hasRelatedWork W3111633653 @default.
- W2972313349 hasRelatedWork W3161152630 @default.
- W2972313349 hasVolume "59" @default.
- W2972313349 isParatext "false" @default.
- W2972313349 isRetracted "false" @default.
- W2972313349 magId "2972313349" @default.
- W2972313349 workType "article" @default.