Matches in SemOpenAlex for { <https://semopenalex.org/work/W2972360283> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2972360283 endingPage "118" @default.
- W2972360283 startingPage "104" @default.
- W2972360283 abstract "Data mining and advanced analytics methods and techniques usage in research and in business settings have increased exponentially over the last decade. Development and implementation of complex Big Data and advanced analytics projects requires well-defined methodology and processes. However, it remains unclear for what purposes and how data mining methodologies are used in practice and across different industry domains. This paper addresses the need and provides survey in the field of data mining and advanced data analytics methodologies, focusing on their application in the banking domain. By means of systematic literature review we have identified 102 articles and analyzed them in view of addressing three research questions: for what purposes data mining methodologies are used in the banking domain? How are they applied (“as-is” vs adapted)? And what are the goals of adaptations? We have identified that a dominant pattern in the banking industry is to use data mining methodologies “as-is” in order to tackle Customer Relationship Management and Risk Management business problems. However, we have also identified various adaptations of data mining methodologies in the banking domain, and noticed that the number of adaptations is steadily growing. The main adaptation scenarios comprise technology-centric aspects (scalability), business-centric aspects (actionability) and human-centric aspects (mitigating discriminatory effects)." @default.
- W2972360283 created "2019-09-19" @default.
- W2972360283 creator A5038886027 @default.
- W2972360283 creator A5080091663 @default.
- W2972360283 creator A5085212075 @default.
- W2972360283 date "2019-01-01" @default.
- W2972360283 modified "2023-10-01" @default.
- W2972360283 title "Data Mining Methodologies in the Banking Domain: A Systematic Literature Review" @default.
- W2972360283 cites W14841665 @default.
- W2972360283 cites W1776383492 @default.
- W2972360283 cites W1825382734 @default.
- W2972360283 cites W1970213392 @default.
- W2972360283 cites W1971436913 @default.
- W2972360283 cites W1995544633 @default.
- W2972360283 cites W2000386955 @default.
- W2972360283 cites W2004473119 @default.
- W2972360283 cites W2016361990 @default.
- W2972360283 cites W2016695522 @default.
- W2972360283 cites W2018633013 @default.
- W2972360283 cites W2028470267 @default.
- W2972360283 cites W2031868344 @default.
- W2972360283 cites W2033626294 @default.
- W2972360283 cites W2036064521 @default.
- W2972360283 cites W2058932693 @default.
- W2972360283 cites W2062828236 @default.
- W2972360283 cites W2094198095 @default.
- W2972360283 cites W2103281268 @default.
- W2972360283 cites W2106086955 @default.
- W2972360283 cites W2114357029 @default.
- W2972360283 cites W2118328848 @default.
- W2972360283 cites W2126168424 @default.
- W2972360283 cites W2148061495 @default.
- W2972360283 cites W2157792207 @default.
- W2972360283 cites W2214306769 @default.
- W2972360283 cites W2303335931 @default.
- W2972360283 cites W2330802240 @default.
- W2972360283 cites W2332367335 @default.
- W2972360283 cites W2415476897 @default.
- W2972360283 cites W2522324495 @default.
- W2972360283 cites W2522834812 @default.
- W2972360283 cites W2581151040 @default.
- W2972360283 cites W2752628211 @default.
- W2972360283 cites W2755977944 @default.
- W2972360283 cites W2784180140 @default.
- W2972360283 cites W2799570094 @default.
- W2972360283 cites W2835478574 @default.
- W2972360283 cites W2861412974 @default.
- W2972360283 cites W2896122694 @default.
- W2972360283 cites W2977533490 @default.
- W2972360283 cites W4233823861 @default.
- W2972360283 doi "https://doi.org/10.1007/978-3-030-31143-8_8" @default.
- W2972360283 hasPublicationYear "2019" @default.
- W2972360283 type Work @default.
- W2972360283 sameAs 2972360283 @default.
- W2972360283 citedByCount "2" @default.
- W2972360283 countsByYear W29723602832021 @default.
- W2972360283 countsByYear W29723602832022 @default.
- W2972360283 crossrefType "book-chapter" @default.
- W2972360283 hasAuthorship W2972360283A5038886027 @default.
- W2972360283 hasAuthorship W2972360283A5080091663 @default.
- W2972360283 hasAuthorship W2972360283A5085212075 @default.
- W2972360283 hasConcept C124101348 @default.
- W2972360283 hasConcept C134306372 @default.
- W2972360283 hasConcept C144133560 @default.
- W2972360283 hasConcept C2522767166 @default.
- W2972360283 hasConcept C33923547 @default.
- W2972360283 hasConcept C36503486 @default.
- W2972360283 hasConcept C41008148 @default.
- W2972360283 hasConceptScore W2972360283C124101348 @default.
- W2972360283 hasConceptScore W2972360283C134306372 @default.
- W2972360283 hasConceptScore W2972360283C144133560 @default.
- W2972360283 hasConceptScore W2972360283C2522767166 @default.
- W2972360283 hasConceptScore W2972360283C33923547 @default.
- W2972360283 hasConceptScore W2972360283C36503486 @default.
- W2972360283 hasConceptScore W2972360283C41008148 @default.
- W2972360283 hasLocation W29723602831 @default.
- W2972360283 hasOpenAccess W2972360283 @default.
- W2972360283 hasPrimaryLocation W29723602831 @default.
- W2972360283 hasRelatedWork W1864954421 @default.
- W2972360283 hasRelatedWork W1991466308 @default.
- W2972360283 hasRelatedWork W2025181711 @default.
- W2972360283 hasRelatedWork W2347219288 @default.
- W2972360283 hasRelatedWork W2348097614 @default.
- W2972360283 hasRelatedWork W2362192218 @default.
- W2972360283 hasRelatedWork W2623347760 @default.
- W2972360283 hasRelatedWork W2743342830 @default.
- W2972360283 hasRelatedWork W2801011252 @default.
- W2972360283 hasRelatedWork W3034138874 @default.
- W2972360283 isParatext "false" @default.
- W2972360283 isRetracted "false" @default.
- W2972360283 magId "2972360283" @default.
- W2972360283 workType "book-chapter" @default.