Matches in SemOpenAlex for { <https://semopenalex.org/work/W2972431882> ?p ?o ?g. }
- W2972431882 endingPage "107031" @default.
- W2972431882 startingPage "107031" @default.
- W2972431882 abstract "Rapid estimation of the release rate of source items after a nuclear accident is very important for nuclear emergency and decision making. A source term estimation method, based on the Backpropagation Neural Network (BPNN), was developed. Kernel Principal Component Analysis (KPCA) is used to reduce the dimension of the input parameters, which can accelerate the training of the neural network. Particle Swarm Optimization (PSO) is used to optimize weights and thresholds of BPNN, so that the neural network can better find the global optimal value, avoid falling into the local minimum. The large amount of data required for neural network training is generated using InterRAS software, the model constructed demonstrates the feasibility of this method. The proposed method can estimate the release rate of I-131 after half an hour of release, which is helpful to the emergency response, or provide an initial value or priori information for other methods." @default.
- W2972431882 created "2019-09-19" @default.
- W2972431882 creator A5009226693 @default.
- W2972431882 creator A5013181005 @default.
- W2972431882 creator A5027969115 @default.
- W2972431882 creator A5040953403 @default.
- W2972431882 creator A5041151640 @default.
- W2972431882 creator A5041866709 @default.
- W2972431882 date "2020-02-01" @default.
- W2972431882 modified "2023-10-17" @default.
- W2972431882 title "Nuclear accident source term estimation using Kernel Principal Component Analysis, Particle Swarm Optimization, and Backpropagation Neural Networks" @default.
- W2972431882 cites W1544461643 @default.
- W2972431882 cites W1916166419 @default.
- W2972431882 cites W1964663153 @default.
- W2972431882 cites W1965982810 @default.
- W2972431882 cites W1970594303 @default.
- W2972431882 cites W1973043875 @default.
- W2972431882 cites W1977703648 @default.
- W2972431882 cites W1978127050 @default.
- W2972431882 cites W1988969170 @default.
- W2972431882 cites W1990928167 @default.
- W2972431882 cites W2016488461 @default.
- W2972431882 cites W2017785684 @default.
- W2972431882 cites W2039220127 @default.
- W2972431882 cites W2045850621 @default.
- W2972431882 cites W2060945559 @default.
- W2972431882 cites W2065215322 @default.
- W2972431882 cites W2074231587 @default.
- W2972431882 cites W2074284053 @default.
- W2972431882 cites W2111146558 @default.
- W2972431882 cites W2118937917 @default.
- W2972431882 cites W2148364730 @default.
- W2972431882 cites W2285004299 @default.
- W2972431882 cites W2328545403 @default.
- W2972431882 cites W2460947211 @default.
- W2972431882 cites W2511711610 @default.
- W2972431882 cites W2557034366 @default.
- W2972431882 cites W2773481233 @default.
- W2972431882 cites W2782923624 @default.
- W2972431882 cites W2793268087 @default.
- W2972431882 cites W2795702227 @default.
- W2972431882 cites W2807940708 @default.
- W2972431882 cites W2886246074 @default.
- W2972431882 cites W2891311017 @default.
- W2972431882 cites W2900890757 @default.
- W2972431882 cites W2953413915 @default.
- W2972431882 doi "https://doi.org/10.1016/j.anucene.2019.107031" @default.
- W2972431882 hasPublicationYear "2020" @default.
- W2972431882 type Work @default.
- W2972431882 sameAs 2972431882 @default.
- W2972431882 citedByCount "19" @default.
- W2972431882 countsByYear W29724318822020 @default.
- W2972431882 countsByYear W29724318822021 @default.
- W2972431882 countsByYear W29724318822022 @default.
- W2972431882 countsByYear W29724318822023 @default.
- W2972431882 crossrefType "journal-article" @default.
- W2972431882 hasAuthorship W2972431882A5009226693 @default.
- W2972431882 hasAuthorship W2972431882A5013181005 @default.
- W2972431882 hasAuthorship W2972431882A5027969115 @default.
- W2972431882 hasAuthorship W2972431882A5040953403 @default.
- W2972431882 hasAuthorship W2972431882A5041151640 @default.
- W2972431882 hasAuthorship W2972431882A5041866709 @default.
- W2972431882 hasConcept C114614502 @default.
- W2972431882 hasConcept C119857082 @default.
- W2972431882 hasConcept C122280245 @default.
- W2972431882 hasConcept C12267149 @default.
- W2972431882 hasConcept C153180895 @default.
- W2972431882 hasConcept C154945302 @default.
- W2972431882 hasConcept C155032097 @default.
- W2972431882 hasConcept C182335926 @default.
- W2972431882 hasConcept C202444582 @default.
- W2972431882 hasConcept C27438332 @default.
- W2972431882 hasConcept C33676613 @default.
- W2972431882 hasConcept C33923547 @default.
- W2972431882 hasConcept C41008148 @default.
- W2972431882 hasConcept C50644808 @default.
- W2972431882 hasConcept C74193536 @default.
- W2972431882 hasConcept C85617194 @default.
- W2972431882 hasConceptScore W2972431882C114614502 @default.
- W2972431882 hasConceptScore W2972431882C119857082 @default.
- W2972431882 hasConceptScore W2972431882C122280245 @default.
- W2972431882 hasConceptScore W2972431882C12267149 @default.
- W2972431882 hasConceptScore W2972431882C153180895 @default.
- W2972431882 hasConceptScore W2972431882C154945302 @default.
- W2972431882 hasConceptScore W2972431882C155032097 @default.
- W2972431882 hasConceptScore W2972431882C182335926 @default.
- W2972431882 hasConceptScore W2972431882C202444582 @default.
- W2972431882 hasConceptScore W2972431882C27438332 @default.
- W2972431882 hasConceptScore W2972431882C33676613 @default.
- W2972431882 hasConceptScore W2972431882C33923547 @default.
- W2972431882 hasConceptScore W2972431882C41008148 @default.
- W2972431882 hasConceptScore W2972431882C50644808 @default.
- W2972431882 hasConceptScore W2972431882C74193536 @default.
- W2972431882 hasConceptScore W2972431882C85617194 @default.
- W2972431882 hasFunder F4320335787 @default.
- W2972431882 hasLocation W29724318821 @default.
- W2972431882 hasOpenAccess W2972431882 @default.
- W2972431882 hasPrimaryLocation W29724318821 @default.