Matches in SemOpenAlex for { <https://semopenalex.org/work/W2972537999> ?p ?o ?g. }
- W2972537999 endingPage "4872" @default.
- W2972537999 startingPage "4861" @default.
- W2972537999 abstract "Joint spectral and spatial information processing is an effective means to improve the classification accuracy of hyperspectral remote sensing images. The Markov random field (MRF) is a powerful tool for integrating spectral and contextual information into the classification framework. However, the shallow structure of the MRF cannot fully exploit the information of hyperspectral imagery. In this article, a cascaded MRF model is proposed to combine the benefit of the MRF and cascaded model. The model consists mainly of two phases. In the first phase, the predicted probability vector generated by the support vector machine classifier and the MRF model is combined. Then, the combined feature vector is concatenated with the original spectral feature to generate an enhanced feature vector with more discriminating power. In the subsequent stage, the enhanced feature vector is used as the input of the next level of the cascaded MRF model. Experiments based on three widely used hyperspectral data show that the proposed method has state-of-the-art performance." @default.
- W2972537999 created "2019-09-19" @default.
- W2972537999 creator A5029711969 @default.
- W2972537999 creator A5039762053 @default.
- W2972537999 creator A5040301865 @default.
- W2972537999 creator A5050630882 @default.
- W2972537999 creator A5082392473 @default.
- W2972537999 date "2019-12-01" @default.
- W2972537999 modified "2023-10-01" @default.
- W2972537999 title "Spectral–Spatial Hyperspectral Image Classification Using Cascaded Markov Random Fields" @default.
- W2972537999 cites W1521436688 @default.
- W2972537999 cites W1939429412 @default.
- W2972537999 cites W1966580635 @default.
- W2972537999 cites W1979730959 @default.
- W2972537999 cites W2001298023 @default.
- W2972537999 cites W2011745746 @default.
- W2972537999 cites W2016860790 @default.
- W2972537999 cites W2029316659 @default.
- W2972537999 cites W2043665634 @default.
- W2972537999 cites W2048308819 @default.
- W2972537999 cites W2051253084 @default.
- W2972537999 cites W2053615857 @default.
- W2972537999 cites W2060173047 @default.
- W2972537999 cites W2090424610 @default.
- W2972537999 cites W2101711129 @default.
- W2972537999 cites W2114819256 @default.
- W2972537999 cites W2123717994 @default.
- W2972537999 cites W2130627644 @default.
- W2972537999 cites W2136251662 @default.
- W2972537999 cites W2158400785 @default.
- W2972537999 cites W2159070926 @default.
- W2972537999 cites W2164437025 @default.
- W2972537999 cites W2168609725 @default.
- W2972537999 cites W2249336288 @default.
- W2972537999 cites W2345128667 @default.
- W2972537999 cites W2500751094 @default.
- W2972537999 cites W2555840851 @default.
- W2972537999 cites W2592340788 @default.
- W2972537999 cites W2603834682 @default.
- W2972537999 cites W2768309288 @default.
- W2972537999 cites W2782517596 @default.
- W2972537999 cites W2793645503 @default.
- W2972537999 cites W2887785636 @default.
- W2972537999 cites W2890982797 @default.
- W2972537999 cites W2894165434 @default.
- W2972537999 cites W2902193101 @default.
- W2972537999 cites W2912371366 @default.
- W2972537999 cites W2913690321 @default.
- W2972537999 cites W3104795559 @default.
- W2972537999 cites W4240485910 @default.
- W2972537999 doi "https://doi.org/10.1109/jstars.2019.2938208" @default.
- W2972537999 hasPublicationYear "2019" @default.
- W2972537999 type Work @default.
- W2972537999 sameAs 2972537999 @default.
- W2972537999 citedByCount "13" @default.
- W2972537999 countsByYear W29725379992020 @default.
- W2972537999 countsByYear W29725379992021 @default.
- W2972537999 countsByYear W29725379992022 @default.
- W2972537999 countsByYear W29725379992023 @default.
- W2972537999 crossrefType "journal-article" @default.
- W2972537999 hasAuthorship W2972537999A5029711969 @default.
- W2972537999 hasAuthorship W2972537999A5039762053 @default.
- W2972537999 hasAuthorship W2972537999A5040301865 @default.
- W2972537999 hasAuthorship W2972537999A5050630882 @default.
- W2972537999 hasAuthorship W2972537999A5082392473 @default.
- W2972537999 hasConcept C105795698 @default.
- W2972537999 hasConcept C115961682 @default.
- W2972537999 hasConcept C119857082 @default.
- W2972537999 hasConcept C12267149 @default.
- W2972537999 hasConcept C124504099 @default.
- W2972537999 hasConcept C127313418 @default.
- W2972537999 hasConcept C130402806 @default.
- W2972537999 hasConcept C138885662 @default.
- W2972537999 hasConcept C153180895 @default.
- W2972537999 hasConcept C154945302 @default.
- W2972537999 hasConcept C159078339 @default.
- W2972537999 hasConcept C159620131 @default.
- W2972537999 hasConcept C2776401178 @default.
- W2972537999 hasConcept C2778045648 @default.
- W2972537999 hasConcept C33923547 @default.
- W2972537999 hasConcept C41008148 @default.
- W2972537999 hasConcept C41895202 @default.
- W2972537999 hasConcept C52622490 @default.
- W2972537999 hasConcept C62649853 @default.
- W2972537999 hasConcept C83665646 @default.
- W2972537999 hasConcept C95623464 @default.
- W2972537999 hasConcept C98763669 @default.
- W2972537999 hasConceptScore W2972537999C105795698 @default.
- W2972537999 hasConceptScore W2972537999C115961682 @default.
- W2972537999 hasConceptScore W2972537999C119857082 @default.
- W2972537999 hasConceptScore W2972537999C12267149 @default.
- W2972537999 hasConceptScore W2972537999C124504099 @default.
- W2972537999 hasConceptScore W2972537999C127313418 @default.
- W2972537999 hasConceptScore W2972537999C130402806 @default.
- W2972537999 hasConceptScore W2972537999C138885662 @default.
- W2972537999 hasConceptScore W2972537999C153180895 @default.
- W2972537999 hasConceptScore W2972537999C154945302 @default.
- W2972537999 hasConceptScore W2972537999C159078339 @default.