Matches in SemOpenAlex for { <https://semopenalex.org/work/W2972575674> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2972575674 abstract "Distant supervision for relation extraction enables one to effectively acquire structured relations out of very large text corpora with less human efforts. Nevertheless, most of the prior-art models for such tasks assume that the given text can be noisy, but their corresponding labels are clean. Such unrealistic assumption is contradictory with the fact that the given labels are often noisy as well, thus leading to significant performance degradation of those models on real-world data. To cope with this challenge, we propose a novel label-denoising framework that combines neural network with probabilistic modelling, which naturally takes into account the noisy labels during learning. We empirically demonstrate that our approach significantly improves the current art in uncovering the ground-truth relation labels." @default.
- W2972575674 created "2019-09-19" @default.
- W2972575674 creator A5004793184 @default.
- W2972575674 creator A5006061735 @default.
- W2972575674 creator A5027015677 @default.
- W2972575674 creator A5075059198 @default.
- W2972575674 creator A5077391729 @default.
- W2972575674 date "2019-09-12" @default.
- W2972575674 modified "2023-09-24" @default.
- W2972575674 title "Uncover the Ground-Truth Relations in Distant Supervision: A Neural Expectation-Maximization Framework" @default.
- W2972575674 cites W1604644367 @default.
- W2972575674 cites W174427690 @default.
- W2972575674 cites W2049633694 @default.
- W2972575674 cites W2053238041 @default.
- W2972575674 cites W2053742104 @default.
- W2972575674 cites W2107598941 @default.
- W2972575674 cites W2132679783 @default.
- W2972575674 cites W2135265773 @default.
- W2972575674 cites W2155454737 @default.
- W2972575674 cites W2162590473 @default.
- W2972575674 cites W2163362093 @default.
- W2972575674 cites W2250521169 @default.
- W2972575674 cites W2251135946 @default.
- W2972575674 cites W2515462165 @default.
- W2972575674 cites W2562220579 @default.
- W2972575674 cites W2577666659 @default.
- W2972575674 cites W2604610161 @default.
- W2972575674 cites W2606901057 @default.
- W2972575674 cites W2759211898 @default.
- W2972575674 cites W2759996146 @default.
- W2972575674 cites W2775968236 @default.
- W2972575674 cites W2776652360 @default.
- W2972575674 cites W2788031953 @default.
- W2972575674 cites W2806882588 @default.
- W2972575674 cites W2807789532 @default.
- W2972575674 cites W2962939608 @default.
- W2972575674 cites W2963171262 @default.
- W2972575674 cites W2963912690 @default.
- W2972575674 cites W2964167098 @default.
- W2972575674 cites W2964213104 @default.
- W2972575674 cites W2964217331 @default.
- W2972575674 cites W2964317478 @default.
- W2972575674 cites W6908809 @default.
- W2972575674 doi "https://doi.org/10.48550/arxiv.1909.05448" @default.
- W2972575674 hasPublicationYear "2019" @default.
- W2972575674 type Work @default.
- W2972575674 sameAs 2972575674 @default.
- W2972575674 citedByCount "0" @default.
- W2972575674 crossrefType "posted-content" @default.
- W2972575674 hasAuthorship W2972575674A5004793184 @default.
- W2972575674 hasAuthorship W2972575674A5006061735 @default.
- W2972575674 hasAuthorship W2972575674A5027015677 @default.
- W2972575674 hasAuthorship W2972575674A5075059198 @default.
- W2972575674 hasAuthorship W2972575674A5077391729 @default.
- W2972575674 hasBestOaLocation W29725756741 @default.
- W2972575674 hasConcept C119857082 @default.
- W2972575674 hasConcept C124101348 @default.
- W2972575674 hasConcept C146849305 @default.
- W2972575674 hasConcept C153604712 @default.
- W2972575674 hasConcept C154945302 @default.
- W2972575674 hasConcept C15744967 @default.
- W2972575674 hasConcept C25343380 @default.
- W2972575674 hasConcept C2776330181 @default.
- W2972575674 hasConcept C41008148 @default.
- W2972575674 hasConcept C49937458 @default.
- W2972575674 hasConcept C50644808 @default.
- W2972575674 hasConcept C77805123 @default.
- W2972575674 hasConceptScore W2972575674C119857082 @default.
- W2972575674 hasConceptScore W2972575674C124101348 @default.
- W2972575674 hasConceptScore W2972575674C146849305 @default.
- W2972575674 hasConceptScore W2972575674C153604712 @default.
- W2972575674 hasConceptScore W2972575674C154945302 @default.
- W2972575674 hasConceptScore W2972575674C15744967 @default.
- W2972575674 hasConceptScore W2972575674C25343380 @default.
- W2972575674 hasConceptScore W2972575674C2776330181 @default.
- W2972575674 hasConceptScore W2972575674C41008148 @default.
- W2972575674 hasConceptScore W2972575674C49937458 @default.
- W2972575674 hasConceptScore W2972575674C50644808 @default.
- W2972575674 hasConceptScore W2972575674C77805123 @default.
- W2972575674 hasLocation W29725756741 @default.
- W2972575674 hasOpenAccess W2972575674 @default.
- W2972575674 hasPrimaryLocation W29725756741 @default.
- W2972575674 hasRelatedWork W2074870855 @default.
- W2972575674 hasRelatedWork W2368651715 @default.
- W2972575674 hasRelatedWork W2479315443 @default.
- W2972575674 hasRelatedWork W2516405314 @default.
- W2972575674 hasRelatedWork W2901548275 @default.
- W2972575674 hasRelatedWork W2970421890 @default.
- W2972575674 hasRelatedWork W2972575674 @default.
- W2972575674 hasRelatedWork W3107474891 @default.
- W2972575674 hasRelatedWork W3212578714 @default.
- W2972575674 hasRelatedWork W4287778722 @default.
- W2972575674 isParatext "false" @default.
- W2972575674 isRetracted "false" @default.
- W2972575674 magId "2972575674" @default.
- W2972575674 workType "article" @default.