Matches in SemOpenAlex for { <https://semopenalex.org/work/W2972606465> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2972606465 abstract "Chronic kidney disease (CKD) is one of the most critical health problems due to its increasing prevalence. In this paper, we aim to test the ability of machine learning algorithms for the prediction of chronic kidney disease using the smallest subset of features. Several statistical tests have been done to remove redundant features such as the ANOVA test, the Pearson’s correlation, and the Cramer’s V test. Logistic regression, support vector machines, random forest, and gradient boosting algorithms have been trained and tested using 10-fold cross-validation. We achieve an accuracy of 99.1 according to F1-measure from Gradient Boosting classifier. Also, we found that hemoglobin has higher importance for both random forest and Gradient boosting in detecting CKD. Finally, our results are among the highest compared to previous studies but with less number of features reached so far. Hence, we can detect CKD at only $26.65 by performing three simple tests." @default.
- W2972606465 created "2019-09-19" @default.
- W2972606465 creator A5041064094 @default.
- W2972606465 creator A5080429518 @default.
- W2972606465 date "2019-01-01" @default.
- W2972606465 modified "2023-10-09" @default.
- W2972606465 title "Detection of Chronic Kidney Disease using Machine Learning Algorithms with Least Number of Predictors" @default.
- W2972606465 cites W1605688901 @default.
- W2972606465 cites W1971955463 @default.
- W2972606465 cites W1977410954 @default.
- W2972606465 cites W1996159834 @default.
- W2972606465 cites W1996202672 @default.
- W2972606465 cites W1996387976 @default.
- W2972606465 cites W2012035409 @default.
- W2972606465 cites W2049201705 @default.
- W2972606465 cites W2078965693 @default.
- W2972606465 cites W2088038235 @default.
- W2972606465 cites W2118561568 @default.
- W2972606465 cites W2121394390 @default.
- W2972606465 cites W2125065061 @default.
- W2972606465 cites W2135794830 @default.
- W2972606465 cites W2140190241 @default.
- W2972606465 cites W2378208052 @default.
- W2972606465 cites W2464795325 @default.
- W2972606465 cites W2511377368 @default.
- W2972606465 cites W2560015483 @default.
- W2972606465 cites W2581465409 @default.
- W2972606465 cites W2593330790 @default.
- W2972606465 cites W2754799147 @default.
- W2972606465 cites W2784081781 @default.
- W2972606465 doi "https://doi.org/10.14569/ijacsa.2019.0100813" @default.
- W2972606465 hasPublicationYear "2019" @default.
- W2972606465 type Work @default.
- W2972606465 sameAs 2972606465 @default.
- W2972606465 citedByCount "34" @default.
- W2972606465 countsByYear W29726064652020 @default.
- W2972606465 countsByYear W29726064652021 @default.
- W2972606465 countsByYear W29726064652022 @default.
- W2972606465 countsByYear W29726064652023 @default.
- W2972606465 crossrefType "journal-article" @default.
- W2972606465 hasAuthorship W2972606465A5041064094 @default.
- W2972606465 hasAuthorship W2972606465A5080429518 @default.
- W2972606465 hasBestOaLocation W29726064651 @default.
- W2972606465 hasConcept C11413529 @default.
- W2972606465 hasConcept C117220453 @default.
- W2972606465 hasConcept C119857082 @default.
- W2972606465 hasConcept C12267149 @default.
- W2972606465 hasConcept C126322002 @default.
- W2972606465 hasConcept C151956035 @default.
- W2972606465 hasConcept C153180895 @default.
- W2972606465 hasConcept C154945302 @default.
- W2972606465 hasConcept C169258074 @default.
- W2972606465 hasConcept C2524010 @default.
- W2972606465 hasConcept C2778653478 @default.
- W2972606465 hasConcept C33923547 @default.
- W2972606465 hasConcept C41008148 @default.
- W2972606465 hasConcept C46686674 @default.
- W2972606465 hasConcept C70153297 @default.
- W2972606465 hasConcept C71924100 @default.
- W2972606465 hasConcept C95623464 @default.
- W2972606465 hasConceptScore W2972606465C11413529 @default.
- W2972606465 hasConceptScore W2972606465C117220453 @default.
- W2972606465 hasConceptScore W2972606465C119857082 @default.
- W2972606465 hasConceptScore W2972606465C12267149 @default.
- W2972606465 hasConceptScore W2972606465C126322002 @default.
- W2972606465 hasConceptScore W2972606465C151956035 @default.
- W2972606465 hasConceptScore W2972606465C153180895 @default.
- W2972606465 hasConceptScore W2972606465C154945302 @default.
- W2972606465 hasConceptScore W2972606465C169258074 @default.
- W2972606465 hasConceptScore W2972606465C2524010 @default.
- W2972606465 hasConceptScore W2972606465C2778653478 @default.
- W2972606465 hasConceptScore W2972606465C33923547 @default.
- W2972606465 hasConceptScore W2972606465C41008148 @default.
- W2972606465 hasConceptScore W2972606465C46686674 @default.
- W2972606465 hasConceptScore W2972606465C70153297 @default.
- W2972606465 hasConceptScore W2972606465C71924100 @default.
- W2972606465 hasConceptScore W2972606465C95623464 @default.
- W2972606465 hasIssue "8" @default.
- W2972606465 hasLocation W29726064651 @default.
- W2972606465 hasLocation W29726064652 @default.
- W2972606465 hasLocation W29726064653 @default.
- W2972606465 hasOpenAccess W2972606465 @default.
- W2972606465 hasPrimaryLocation W29726064651 @default.
- W2972606465 hasRelatedWork W1996541855 @default.
- W2972606465 hasRelatedWork W3100297620 @default.
- W2972606465 hasRelatedWork W3195168932 @default.
- W2972606465 hasRelatedWork W3208169454 @default.
- W2972606465 hasRelatedWork W3211193619 @default.
- W2972606465 hasRelatedWork W4212956667 @default.
- W2972606465 hasRelatedWork W4321636153 @default.
- W2972606465 hasRelatedWork W4379536929 @default.
- W2972606465 hasRelatedWork W4382701299 @default.
- W2972606465 hasRelatedWork W4383535405 @default.
- W2972606465 hasVolume "10" @default.
- W2972606465 isParatext "false" @default.
- W2972606465 isRetracted "false" @default.
- W2972606465 magId "2972606465" @default.
- W2972606465 workType "article" @default.